Welcome to your CDP Climate Change Questionnaire 2023

C0. Introduction

C0.1

(C0.1) Give a general description and introduction to your organization.

From our California Gold Rush beginnings, we have grown into one of the world’s largest brand-name apparel companies. A history of responsible business practices, rooted in our core values, has helped us build our brands and engender consumer trust around the world. Under our Levi’s®, Dockers®, Signature by Levi Strauss & Co.™ and Denizen® brands, we design, market and sell – directly or through third parties and licensees – products that include jeans, casual and dress pants, tops, shorts, skirts, dresses, jackets, footwear, and related accessories for men, women and children around the world. Our newest brand, Beyond Yoga®, is a body positive, premium athleisure apparel brand focused on quality, fit and comfort for all shapes and sizes. Beyond Yoga emissions have been incorporated into scope 1, 2 and 3 (category 1) emission inventories. Our products are sold in approximately 50,000 retail locations worldwide, including approximately 3,200 brand-dedicated stores and shop-in-shops.

*Beyond Yoga reporting data has been excluded in scope 3 categories beyond scope 3, category 1 in accordance with the GHG Protocol reporting guidelines

C0.2

(C0.2) State the start and end date of the year for which you are reporting data and indicate whether you will be providing emissions data for past reporting years.
Reporting year

Start date
November 29, 2021

End date
November 29, 2022

Indicate if you are providing emissions data for past reporting years
Yes

Select the number of past reporting years you will be providing Scope 1 emissions data for
1 year

Select the number of past reporting years you will be providing Scope 2 emissions data for
1 year

Select the number of past reporting years you will be providing Scope 3 emissions data for
1 year

C0.3

(C0.3) Select the countries/areas in which you operate.

Argentina
Australia
Austria
Bangladesh
Belgium
Bolivia (Plurinational State of)
Brazil
Bulgaria
Cambodia
Canada
Chile
China
China, Macao Special Administrative Region
Colombia
Czechia
Denmark
Dominican Republic
Egypt
El Salvador
Ethiopia
Finland
France
Germany
Greece
Guatemala
Hungary
India
Indonesia
Ireland
Italy
Japan
Kenya
Lesotho
Madagascar
Malaysia
Mauritius
Mexico
Netherlands
New Zealand
Nicaragua
Norway
Pakistan
Peru
Philippines
Poland
Portugal
Republic of Korea
Romania
Singapore
South Africa
Spain
Sri Lanka
Sweden
Switzerland
Taiwan, China
Thailand
Turkey
United Arab Emirates
United Kingdom of Great Britain and Northern Ireland
United States of America
Viet Nam

C0.4

(C0.4) Select the currency used for all financial information disclosed throughout your response.

USD
C0.5

(C0.5) Select the option that describes the reporting boundary for which climate-related impacts on your business are being reported. Note that this option should align with your chosen approach for consolidating your GHG inventory.

Operational control

C0.8

(C0.8) Does your organization have an ISIN code or another unique identifier (e.g., Ticker, CUSIP, etc.)?

<table>
<thead>
<tr>
<th>Indicate whether you are able to provide a unique identifier for your organization</th>
<th>Provide your unique identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, a CUSIP number</td>
<td>52736R102</td>
</tr>
<tr>
<td></td>
<td>[ISIN US52736R1023]</td>
</tr>
<tr>
<td></td>
<td>Ticker LEVI</td>
</tr>
</tbody>
</table>

C1. Governance

C1.1

(C1.1) Is there board-level oversight of climate-related issues within your organization?

Yes

C1.1a

(C1.1a) Identify the position(s) (do not include any names) of the individual(s) on the board with responsibility for climate-related issues.
<table>
<thead>
<tr>
<th>Position of individual or committee</th>
<th>Responsibilities for climate-related issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board-level committee</td>
<td>Levi Strauss &amp; Co. has multiple board committees with responsibility for oversight of climate-related issues. This includes the Nominating, Governance &amp; Corporate Citizenship Committee and the Audit Committee. The Nominating, Governance and Corporate Citizenship Committee reviews the risks associated with our corporate citizenship and sustainability initiatives and approves all public facing climate and sustainability-related goals and targets on a quarterly basis. The Audit Committee reviews major financial risk exposures, and the steps management has taken to monitor and control such exposures. In this context, management engages in discussions with the Audit Committee and the Board concerning risk, both periodically and annually, during a review of the key risks to the company’s plans and strategies and mitigation plans for those risks, which include climate-related risks. Additionally, the Audit Committee assists the Board in its oversight of the integrity of our ESG disclosures included in external disclosures, including climate and sustainability related disclosures within our annual report (10K). Supporting programs and initiatives are managed by accountable functions in the organization including but not limited to global sustainability, product development and sourcing, product design, finance, marketing and commercial. Our vision is to build sustainability into everything we do, so that our profitable growth helps restore the planet. As an example of decision made, in 2022, the Board reviewed a new holistic sustainability strategy to be adopted by LS&amp;Co. This new strategy included sustainability goals across three main pillars, Climate, Consumption, and Community. The strategy, which includes 16 clear goals, demonstrates our commitment to both a comprehensive definition of sustainability and progress. 3 of the goals are climate related: 1) 40% absolute reduction in supply chain greenhouse gas emissions by 2025, 2) 90% absolute reduction in greenhouse gas emissions and 100% renewable electricity in all company operated facilities by 2025, 3) Net-zero emissions of greenhouse gasses by no later than 2050.</td>
</tr>
</tbody>
</table>

**C1.1b**

*(C1.1b) Provide further details on the board’s oversight of climate-related issues.*
<table>
<thead>
<tr>
<th>Frequency with which climate-related issues are a scheduled agenda item</th>
<th>Governance mechanisms into which climate-related issues are integrated</th>
<th>Please explain</th>
</tr>
</thead>
</table>
| Scheduled – some meetings | Reviewing and guiding annual budgets  
Overseeing major capital expenditures  
Overseeing acquisitions, mergers, and divestitures  
Overseeing and guiding employee incentives  
Reviewing and guiding strategy  
Overseeing the setting of corporate targets  
Monitoring progress towards corporate targets  
Overseeing and guiding public policy engagement  
Reviewing and guiding the risk management process | The Board of Directors' Nominating, Governance and Corporate Citizenship Committee assists the board in fulfilling its oversight responsibilities on corporate governance matters, which includes, but is not limited to climate-related issues. The Chief Sustainability Officer and/or EVP, Chief Operations Officer report to the Nominating, Governance and Corporate Citizenship Committee at least four times per year on sustainability issues, including updates on climate-related goals, progress made and other matters.  
The Vice President of Global Security and Resilience reports the results of the annual risk survey, which includes climate change, to the Board of Directors' Audit Committee.  
The Compensation & Human Capital committee is responsible for approving incentive structures which includes a climate objective for the COO. |

**C1.1d**

**(C1.1d) Does your organization have at least one board member with competence on climate-related issues?**
<table>
<thead>
<tr>
<th>Board member(s) have competence on climate-related issues</th>
<th>Criteria used to assess competence of board member(s) on climate-related issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Yes</td>
</tr>
</tbody>
</table>

**C1.2**

*(C1.2) Provide the highest management-level position(s) or committee(s) with responsibility for climate-related issues.*

**Position or committee**
Chief Operating Officer (COO)

**Climate-related responsibilities of this position**
- Managing annual budgets for climate mitigation activities
- Managing major capital and/or operational expenditures related to low-carbon products or services (including R&D)
- Developing a climate transition plan
- Integrating climate-related issues into the strategy
- Conducting climate-related scenario analysis
- Setting climate-related corporate targets
- Monitoring progress against climate-related corporate targets
- Managing value chain engagement on climate-related issues
- Assessing climate-related risks and opportunities
- Managing climate-related risks and opportunities
Coverage of responsibilities

Reporting line
CEO reporting line

Frequency of reporting to the board on climate-related issues via this reporting line
Quarterly

Please explain
Our EVP and Chief Operations Officer, and Chief Sustainability Officer are eligible for incentive compensation for the effective management of sustainability issues. As a specific example, the EVP and Chief Operations Officer has an absolute operational greenhouse gas emissions reductions target and a renewable energy procurement target (as a percentage of absolute operational energy use) built into her performance objectives. Climate-related issues are monitored through many corporate initiatives, including Better Cotton purchasing, management of our WaterLess® product line, monthly policy update meetings, absolute greenhouse gas (GHG) and energy targets, regenerative cotton sourcing, and the construction of a new sustainable Distribution Center in the EU.

Our Chief Operations Officer and CSO report four times per year to the Board on a range of topics which may include progress towards our climate targets. To ensure the company’s policy actions are aligned with business strategies, including our climate and energy objectives, there is a monthly leadership meeting on policy, which includes the CEO, CFO, General Counsel, Chief Counsel, Chief Communications Officer, Chief Operations Officer, CSO and Head of Global Policy and Advocacy. This ensures that even in a dynamic policy environment, executives have an opportunity to confirm that the company’s policy activities support all aspects of the corporate strategy, including climate issues. In addition, the Chief Operations Officer and CSO are engaged in multiple meetings with senior leadership, and family and institutional investors on a regular basis to discuss approaches and progress toward the LS&Co. Science Based targets (SBTs).

C1.3

(C1.3) Do you provide incentives for the management of climate-related issues, including the attainment of targets?
Provide incentives for the management of climate-related issues

<table>
<thead>
<tr>
<th>Row</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>Certain employees are eligible for incentive compensation for the effective management of sustainability issues. LS&amp;Co. bases each employee's annual bonus allocation on a combination of company and individual performance. Individual performance is assessed against annual objectives, which for certain employees includes effective management of sustainability issues, including climate-related issues.</td>
<td></td>
</tr>
</tbody>
</table>

C1.3a

(C1.3a) Provide further details on the incentives provided for the management of climate-related issues (do not include the names of individuals).

- **Entitled to incentive**
  - Chief Operating Officer (COO)

- **Type of incentive**
  - Monetary reward

- **Incentive(s)**
  - Bonus - % of salary

- **Performance indicator(s)**
  - Progress towards a climate-related target

- **Incentive plan(s) this incentive is linked to**
  - Short-Term Incentive Plan

- **Further details of incentive(s)**
LS&Co.’s Chief Operations Officer has an absolute operational greenhouse gas emissions reductions target and a renewable energy procurement target (as a percentage of absolute operational energy use) built into the annual individual performance objectives.

**Explain how this incentive contributes to the implementation of your organization’s climate commitments and/or climate transition plan**

Helps ensure accountability across the organization for achieving our targets and necessary prioritization of resources to address GHG and renewable energy year over year targets

---

**Entitled to incentive**
Chief Sustainability Officer (CSO)

**Type of incentive**
Monetary reward

**Incentive(s)**
Bonus - % of salary

**Performance indicator(s)**
Progress towards a climate-related target

**Incentive plan(s) this incentive is linked to**
Short-Term Incentive Plan

**Further details of incentive(s)**
LS&Co.’s CSO has the accountability and responsibility for achievement of our 2025 greenhouse gas emissions reduction targets, by leading the teams across the value chain focused on GHG reductions, investments and accounting built into their annual individual performance objectives.

**Explain how this incentive contributes to the implementation of your organization's climate commitments and/or climate transition plan**
Helps ensure accountability within and across the organization for achieving our targets and prioritization of resources to deliver on climate related projects.

Entitled to incentive
Other, please specify
VP Design and Innovation

Type of incentive
Monetary reward

Incentive(s)
Bonus - % of salary

Performance indicator(s)
Other (please specify)
Identify and pilot lower footprint materials and processes

Incentive plan(s) this incentive is linked to
Short-Term Incentive Plan

Further details of incentive(s)
LS&Co.’s VP of Design and Innovation has been tasked with the target to identify and pilot lower footprint materials and processes to improve the environmental performance of product and bring to scale across the portfolio.

Explain how this incentive contributes to the implementation of your organization’s climate commitments and/or climate transition plan
Drives accountability for development of lower footprint materials and piloting new materials and inputs in garments, which will ultimately help reduce our scope 3 emissions.
C2. Risks and opportunities

C2.1

(C2.1) Does your organization have a process for identifying, assessing, and responding to climate-related risks and opportunities?

Yes

C2.1a

(C2.1a) How does your organization define short-, medium- and long-term time horizons?

<table>
<thead>
<tr>
<th>Time Horizon</th>
<th>From (years)</th>
<th>To (years)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term</td>
<td>1</td>
<td>3</td>
<td>LS&amp;Co. considers short-term risks to be those occurring 1-3 years into the future.</td>
</tr>
<tr>
<td>Medium-term</td>
<td>3</td>
<td>7</td>
<td>LS&amp;Co. considers medium-term risks to be those occurring 3-7 years into the future.</td>
</tr>
<tr>
<td>Long-term</td>
<td>7</td>
<td>12</td>
<td>LS&amp;Co. considers long-term risks to be those occurring 7-12 years into the future.</td>
</tr>
</tbody>
</table>

C2.1b

(C2.1b) How does your organization define substantive financial or strategic impact on your business?

Process(es) for identifying, assessing and responding to climate-related risks and opportunities:

The process used to determine which risks and opportunities could have a substantive financial or strategic impact on the organization is informed by our Enterprise Risk Management committee (ERC). Every year ERC undergoes a robust process to identify and proactively address emerging risks to the company. The ERC consists of 12 leaders in the company including our CFO, CCO, COO, Chief Legal Officer (in 2023 this role’s title changed to ‘General Counsel’), CHRO, CIO, CMO and Global Controller, as well as senior leaders from sustainability, security, audit, compliance and product development and sourcing. The top 15 entity-wide risks identified are presented to the Audit Committee of the Board on an annual basis. In 2022, climate-related risk was in the top 10. The ERC and risk management process enables LS&Co. to identify and manage risks entity-wide, improve resource deployment and enhance our enterprise resilience. The Enterprise Risk department surveys our top leaders (~140) annually to identify and characterize risks to estimate the potential impact and likelihood of each risk and assign a score accordingly. These risk scores allow LS&Co. to determine the relative significance of each risk in relation to the other risks. Special attention is made to align with the COSO and MSCI Index.
Frameworks to integrate ESG themes into this process. The ERC identifies ongoing work to mitigate and prevent, to the extent possible, the risk from having an impact on our business. This includes scenario planning, risk forecasting, and testing crisis and business continuity plans. The top identified risks are reported to the Audit Committee of the Board at least annually. Climate-related matters are also separately reviewed on a case-by-case basis by our sustainability and supply chain functions, and other internal and external stakeholders to understand the level of importance and potential direct, upstream, and downstream impacts including risks with a potential for substantial financial impact. This review includes understanding potential climate-related impacts related to brand reputation, operational disruption, supply availability and cost, consumer awareness and regulatory activity. The findings are reviewed with the Executive Leadership Team (ELT), as well as the Board of Directors’ Nominating, Governance and Corporate Citizenship Committee at least annually.

For the purposes of defining "substantive financial or strategic impact" when identifying or assessing climate-related risks for this CDP survey:
Climate-related matters are evaluated on a case-by-case basis to determine whether they have a substantive financial or strategic impact on our business over the short-, medium- and long-term. When evaluating particular climate-related matters, we consider, among other factors, the potential impact on operations, business strategy, cost and availability of raw materials, measurable financial impact that may be one or more percentage points of our annual net revenues, and whether we are able to offset such impact, and the potential for stakeholder or reputational impact. Any one of these elements or a combination thereof could be the basis for determination that a climate-based risk may have a substantive financial or strategic impact.

For purposes of evaluating climate-based risks, we consider the following when determining whether a climate-based risk may have a substantive financial or strategic impact: a 1% or greater impact on our annual net revenues – such as overall product cost increases or significant risk to product availability, resulting in a financial impact of 1% or greater on our annual net revenues. For FY22, our annual net revenues were $6.2B, 1% of which is $62M.

C2.2

(C2.2) Describe your process(es) for identifying, assessing and responding to climate-related risks and opportunities.

Value chain stage(s) covered
Direct operations
Upstream
Downstream

Risk management process
Integrated into multi-disciplinary company-wide risk management process

Frequency of assessment
More than once a year

Time horizon(s) covered
Short-term
Medium-term
Long-term

Description of process
LS&Co. identifies, assesses, and determines climate-related risks with a substantive financial and or strategic impact at least once per year through both our company-wide enterprise risk assessments and periodic specific analysis in direct operations and across the supply chain including our Sustainability Issue Prioritization (also known as sustainability-related “materiality assessments”), supply chain risk assessments, Life Cycle Assessments (LCA) and review of supplier data collected through the Sustainable Apparel Coalition’s Higg Facility Environmental Module (FEM). We evaluate climate-related risks in the short-, medium- and long-term. We consider long-term risks to be those occurring 7-12 years into the future. Carbon emissions across our value chain have been identified as material component of climate-related risks for our business.

To better understand and identify our carbon impacts and hotspots, we developed an annual greenhouse gas (GHG) inventory for our global operations, and every six months, we develop a GHG inventory for our distribution centers (representing ~40% of Scope 1 and 2 emissions). We then conducted GHG modelling using three scenarios to evaluate energy and GHG risks through 2025. This analysis informed our Science Based Target Initiative (SBTi) approved GHG target - to reduce 90% of GHGs in our direct operations including all owned-and-operated facilities. Our response to these operational risks includes increased investing in onsite renewable energy and energy efficiency upgrades.

In 2022 we conducted our first quantitative physical and transition climate risk and opportunity scenario assessment to evaluate our upstream and downstream climate-related risk exposure. This assessment considered two established climate change scenario pathways of high
physical impact (4°C) and rapid transition (<1.5°C) warming scenarios along a 2030- and 2050-time horizon. These two selected scenarios are in alignment with TCFD (“Task Force on Climate-related Financial Disclosure Guidance”). The methodology outlines a clear approach to identifying risks and opportunities which can be replicated at a regular cadence. The assessment further expanded upon our 2016 qualitative study of 5 countries to include 9 countries/regions.

We assessed raw material production, manufacturing, and our owned operations for the two climate scenarios. We evaluated the potential risks and impacts of heat extremes, water shortages and drought, riverine and coastal flooding from precipitation events, and tropical cyclonic events. Additionally, we assessed opportunities for growing demand of circular products, energy efficiency, NGO perception and carbon pricing. These risks and opportunities were reviewed by senior leadership and will be embedded into the business, the enterprise risk management process, as well as assessed for financial impact.

In response to the physical and transition risks we prioritized risk response and mitigation actions that included supplier redundancy to ensure active operations despite flooding or severe droughts; investments in sustainably sourced cotton and supporting the Better Cotton Initiative, Organic Cotton Accelerator, and US Cotton Trust Protocol (investing in cotton that uses less water and chemicals); continuing to identify cotton alternatives (e.g., cottonized hemp) and increased investments in R&D and product design (e.g., circularity, recycled content); continuing to expand International Finance Corporation’s (IFC) Partnership for Cleaner Textiles (PaCT) to drive investments in water-efficiency/conservation initiatives and technology. In 2022, LS&Co. conducted 21 PaCT assessments and 5 Apparel Impact Institute (AII) Assessments in supplier facilities. In 2023, we have 5-10 PaCT assessments and 2 AII assessments planned. In 2023 LS&Co. plans to further embed the risks and opportunities into the business, our strategic business plans and leverage the findings to inform the development of a climate transition action plan.

In addition to the climate scenario assessment, we also identified and assessed downstream climate-related risks, we conducted: (1) sustainability-related materiality assessments to understand the importance of climate change issues to our customers and consumers of our products, and (2) product life-cycle assessments (LCAs) to show energy and water impacts associated with the consumer-use phase to gain better insights into consumer behaviors by market.

Consumer use comprises ~31% of our Scope 3 emissions. In response, we continue to maintain our current commitment to creating consumer awareness and impact reduction. Examples include, our “A Care Tag for the Planet” campaign, which has incorporated a permanent care label on every garment that reads “Wash less, wash cold, line dry, donate to Goodwill”. We also reinvigorated our Buy Better Wear Longer campaign.
in 2022 with more content and a wider reach – the global campaign – encourages consumers to be intentional about their consumption. When possible, we encourage consumers to purchase high quality products that will last.

### C2.2a

(C2.2a) Which risk types are considered in your organization's climate-related risk assessments?

<table>
<thead>
<tr>
<th>Relevance &amp; inclusion</th>
<th>Please explain</th>
</tr>
</thead>
</table>
| Current regulation    | Relevant, always included  
Current regulations are always included in our climate risk assessment as we have facilities in multiple jurisdictions that are subject to different climate-related regulations. We closely monitor any regulations relevant to our operations. For example, our factory in Poland is subject to the Poland Carbon Tax, and we are required to track and report emissions from stationary and mobile combustion, annually. While regulations related to carbon and climate change may have direct and indirect impacts on our business, we do not find these regulatory risks to be material. Our business operations, including leased locations, are not energy intensive and nearly all of our facilities fall below threshold requirements for current regulations limiting emissions, cap and trade programs, and those for mandatory reporting of greenhouse gas emissions. Our Policy and Advocacy team monitors current and emerging regulations that may impact business and operations. However, the expected magnitude and/or likelihood of the risks driven by current regulations are sufficiently small and the timescale over which they could occur, sufficiently long, that we do not currently anticipate substantial changes in our business operations, revenue or expenditure. We assess risks from current regulations as part of our regular sustainability-related materiality assessments. |
| Emerging regulation   | Relevant, always included  
Emerging regulations are always included in our climate risk assessment because we have facilities in multiple jurisdictions that are subject to different climate-related regulations, and we closely monitor their relevance to our operations. For example, as a public company with international presence, LS&Co. is subject to disclosure of our climate-related risks and greenhouse gas emissions metrics in accordance with the EU’s CSRD framework, and, if the SEC’s proposed climate disclosure rules are enacted, in our annual reports on Form 10-K. Our business is not energy intensive and nearly all our facilities fall below threshold requirements for current regulations limiting emissions, cap and trade programs, and those for mandatory reporting of greenhouse gas emissions. Our Policy and Advocacy team monitors current and emerging regulations that may impact business and operations. The expected magnitude of the risks driven by emerging regulations |
are low to moderate and the likelihood is about as likely as not. We assess risks from emerging regulations as part of our regular sustainability-related materiality assessments.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Relevant, always included</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology related risks are always included in our climate risk assessment because we are vulnerable to risks and uncertainties associated with changes in the existing technology used in the manufacturing and sale of our products, including energy and raw material requirements. We must keep up to date with competitive technology trends, including the use of new or improved technology to reduce our energy use through energy efficiency projects or the purchase of renewable energy. Examples of recent energy efficiency projects include lighting upgrades in retail store, offices, and distribution centers, installation of motion sensors, replacement of roof tiles with white surfaces to reduce cooling needs, and HVAC upgrades. In 2022, LS&amp;Co. rolled out a global energy management system which allows for improved measurement and management of energy data and allows for focused interventions at sites. LS&amp;Co. performed LED lighting replacements in the Canton, MS and Northampton, UK distribution centers. The LED lighting replacement in the UK distribution center is anticipated to yield annual energy savings of almost 240 MWh. Our failure to successfully respond to climate-related technology risks and uncertainties might damage our reputation and brands and prevent us from reducing operating costs through energy efficiency measures. We assess risks from climate-related technology by assessing the impacts of different technology options through product LCAs and regular sustainability-related materiality assessments.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Legal</th>
<th>Relevant, always included</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legal risks are relevant and always included in our climate risk assessment. For example, engagement with investors on sustainability has increased over the last 5 years. Additionally, the SEC has proposed climate risk disclosures, with reporting requirements for issuers to include specific, material, substantiated, decision-useful environmental, social, and governance, or ESG factors. Legal risks, while low currently, will likely increase in importance, and LS&amp;Co. will continue to monitor these requirements to ensure compliance.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Market</th>
<th>Relevant, always included</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market related risks are always included in our climate risk assessment because the market price for raw materials that are used in principal fabrics of our products, such as cotton, blends, synthetics, and wools have a significant impact on our financial performance. The prices we pay our suppliers to manufacture products are dependent in part on the market price for the necessary raw materials, primarily cotton. The price and availability of cotton may fluctuate substantially, depending on a variety of factors, including demand, acreage devoted to cotton crops, crop yields, weather, supply conditions, transportation costs, energy prices, work stoppages, government regulation, government policy, economic climates, market speculation and other unpredictable factors. Any and all of these factors may be exacerbated by global climate change. Cotton prices suffered from unprecedented variability and uncertainty in prior years and may fluctuate significantly again in</td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Relevance</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Reputation</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Acute physical</td>
<td>Relevant, always included</td>
</tr>
</tbody>
</table>
may experience increased vulnerability under the effects of climate change. To mitigate these risks, we use numerous suppliers located throughout the world for the production and finishing of our products. In FY 2022, LS&Co. sourced apparel from independent contractors located in approximately 38 countries around the world, with no single country accounting for more than 25% of our sourcing by product volume. We assess risks from acute physical events as part of our regular sustainability-related materiality assessments. These 38 countries comprise both direct and indirect sourcing and all LS&Co products, including footwear and accessories.

| Chronic physical | Relevant, always included | We always include chronic physical risks in our climate risk assessment because apparel production depends heavily on water availability—from growing cotton to manufacturing to consumer care at home – and the business continuity of our operations and supply chain will be heavily influenced by water scarcity, prolonged drought, variability in precipitation and other chronic stresses caused by rising temperatures. Based on a recent life cycle assessment (LCA), we found that nearly 70% of water withdrawals occurs in the fiber phase (e.g., cotton growing) while 6% occurs in the fabric production phase (manufacturing). All of these risks can threaten the availability of freshwater critical to our mills, laundries and factories as well as the farms that provide the material basis for our products, specifically cotton. Cotton is grown in some of the most arid regions in the world, and climate change can significantly impact cotton availability, quality and pricing. If global cotton production were to fall or water were to become more expensive as a result of climate change, the price of cotton could go up, which, in turn, could drive up our production costs. Similarly, some of our apparel factories are located in countries facing high water-related risks, including Bangladesh, Pakistan, Mexico and China. We could be exposed to potential supply chain disruption if a factory, mill or laundry were required to close or be relocated due to water scarcity. Additionally, LS&Co.’s ability to operate in developing countries where cotton is grown may be challenged, there is competition in poor communities for scarce resources (e.g., water, land) and/or our suppliers may be contributing to the pollution of air and local waterways. We assess risks from chronic physical changes due to climate-change as part of our regular sustainability-related materiality assessments. |

**C2.3**

(C2.3) Have you identified any inherent climate-related risks with the potential to have a substantive financial or strategic impact on your business?

Yes
**C2.3a**

(C2.3a) Provide details of risks identified with the potential to have a substantive financial or strategic impact on your business.

---

**Identifier**

Risk 1

**Where in the value chain does the risk driver occur?**

Upstream

**Risk type & Primary climate-related risk driver**

Market

Increased cost of raw materials

**Primary potential financial impact**

Increased direct costs

**Company-specific description**

Apparel production depends heavily on water availability—from growing cotton to manufacturing to consumer care at home. Using the WRI Aqueduct tool we found that as of 2021 approximately 40 of our key suppliers are located in geographies that are considered “high water stress”. And based on a life cycle assessment (LCA), in general, we found that nearly 70% of water withdrawals occur in the fiber phase (e.g., cotton growing) while approximately 6% occur in the fabric production phase. Additionally, our 2022 completed scenario modelling indicated a similar high risk from climate change. The modelling indicated that there may be some initial short-term benefits to cotton due to warming temperatures and rising CO2 concentrations but that these would diminish over time towards 2050, and we are likely to see an increase in acute weather events that will negatively impact cotton production. As a result, our supply chain is potentially exposed to significant physical risks from climate change, including unpredictable rain patterns, decreases in precipitation, rising temperatures, and extended drought, etc. All of these risks can threaten the availability of freshwater critical to our supplier mills, laundries and factories as well as the farms that provide the material basis for our products, specifically cotton. Cotton is grown in some of the most arid regions in the world, and climate change can significantly
impact cotton availability, quality, and pricing. If global cotton production were to fall or water were to become more expensive as a result of climate change, the price of cotton could go up, which, in turn, could drive up our production costs.

**Time horizon**
Long-term

**Likelihood**
More likely than not

**Magnitude of impact**
High

**Are you able to provide a potential financial impact figure?**
Yes, an estimated range

**Potential financial impact figure (currency)**

**Potential financial impact figure – minimum (currency)**
131,000,000

**Potential financial impact figure – maximum (currency)**
393,000,000

**Explanation of financial impact figure**
Potential financial impacts from chronic changes in precipitation patterns and extreme variability in weather patterns are related to increased cost of raw materials, specifically cotton, which represents a key component of our manufacturing costs. Cotton costs may increase as a result of decreased cotton supply or increased cost of water needed for cotton growing. A study from the USDA on ‘Climate Change, Water Scarcity and Adaptation in the U.S. Fieldcrop Sector’ estimated that by 2040, production-weighted price for cotton would likely increase by 10% - 30%. For the purposes of this estimation, we are taking a very conservative approach and assuming this cotton price increase within a 1-year period. Raw materials, such as cotton, generally represent about half of the cost of goods sold (COGS) in the apparel industry, with variations driven by the materials, product specifications, production regions and quantity purchased. To estimate the potential financial impact as a result of
climate-related cotton price increases, a 10% to 30% cotton price increase was applied to half (50%) of LS&Co.'s COGS as for FY22
[10%*50%*2.62 B = $131M; 30%*50%*$2.62 B = $393M]. The resulting estimate represents the range of potential impact for one fiscal year,
asumes elevated cotton price are in place for the entire year, there is no other supply chain disruption, and no mitigating actions are taken.
This estimated potential financial impact range is highly dependent on other external forces and sourcing strategy and is subsequently subject
to change.

Cost of response to risk

0

Description of response and explanation of cost calculation

Case study:
Situation: LS&Co. purchases cotton on a global scale and ensures redundancy within our supply chain to reduce potential risks associated with
supply chain disruptions, including those caused by weather variability and other climate related issues. Consistent with our overall risk
mitigation strategy, our supply chain is designed to be resilient. Although cotton commodity prices did increase in 2022 compared to 2021, these
costs were absorbed into business-as-usual activities and are considered in LS&Co.'s financial plans. Therefore, we have put 0 as a cost of
response to risk.
Task: Given that approximately 90 percent of LS&Co. products are cotton-based, the sustainability of our cotton supply and possible new
solutions to address this raw material's impact- including, water used in cotton agriculture, irrigation and runoff, use of pesticides and farmer
education- were considered. Cotton agriculture accounts for nearly 70 percent of the water used during the lifecycle of a pair of jeans (per life
cycle assessment).
Action: To further manage a variety of risks cotton poses in our supply chain, in 2021, LS&Co. ran a pilot with US Cotton Trust Protocol
(USCTP) to test our compatibility with their systems and enroll several of our Americas-based suppliers into the program.
Result: At the end of 2022, approximately 99 percent of our cotton was sourced from Better Cotton Initiative (BCI) farmers, organic cotton farms,
or recycled cotton suppliers, and we intend to reach 100 percent certified or sustainably sourced cotton by 2025.

Comment

No additional comments.
Risk 2

Where in the value chain does the risk driver occur?
Upstream

Risk type & Primary climate-related risk driver
Acute physical
Drought

Primary potential financial impact
Increased direct costs

Company-specific description
In FY22, LS&Co. sourced apparel products in 38 countries and some of our factories, mills, and laundries are located in countries facing high climate-related risks, including Bangladesh, Pakistan, Mexico and China. These 38 countries comprise both direct and indirect sourcing and all LS&Co products, including footwear and accessories. Many of these countries may already be or are expected to feel initial effects of climate change, including water shortage (India, China, Nicaragua, Bangladesh, Pakistan, Mexico), disease (Cambodia), and flooding (Pakistan, Mexico, China, Bangladesh). This was confirmed by our 2022 Scenario Modeling indicating that heat extremes and water shortages/droughts are expected to increase under a 4C climate scenario. The Intergovernmental Panel on Climate Change listed Bangladesh, the Mekong Delta in Vietnam, and the Nile Delta in Egypt as the world’s three hot spots for potential migration because of their combination of sea-level rise, extreme weather events and existing population. All three are important sourcing regions for LS&Co. We could be exposed to potential supply chain disruption if a factory, mill, laundry, distribution center or route were required to close due to an extreme weather event, leading to the need to identify alternative distribution and logistics providers or resulting in higher transportation costs or longer transport times. Some supply and distribution routes are in geographic areas that may experience increased vulnerability under the effects of climate change.

To identify, assess, and evaluate our upstream climate-related risk exposure, we conduct physical and transition climate risk assessments in our supply chain. In 2016, we conducted our first qualitative physical climate risk assessment. In 2019, we expanded our assessment to include transition risks over five key geographic regions – representing 56% of LS&Co. supplier global factory and 59% of global mill production – Bangladesh, China, India, Mexico, and Pakistan. In 2022, we further expanded this assessment to include 9 regions representing a majority of our supplier and mill global production. The analysis helped to prioritize supplier engagement and management efforts and focus risk mitigation
actions.

**Time horizon**
- Short-term

**Likelihood**
- More likely than not

**Magnitude of impact**
- Medium-low

**Are you able to provide a potential financial impact figure?**
- Yes, an estimated range

**Potential financial impact figure (currency)**

**Potential financial impact figure – minimum (currency)**
- 0

**Potential financial impact figure – maximum (currency)**
- 230,000,000

**Explanation of financial impact figure**

Potential financial impacts from increased frequency and severity of extreme weather events such as acute droughts, cyclones and floods are based on the estimated impact of lost revenues, inventory markdowns from inability to meet customer demand and increased cost of goods sold. If one/multiple factories, mills, laundries, distribution centers or routes are closed/destroyed due to a severe climate event, it could potentially result in incremental costs associated with damaged inventory and locating alternative facilities, distribution, and logistics providers. These alternatives may not be available on short notice, resulting in delays or the inability to deliver products to our customers, or could result in higher product costs. Delays in the manufacturing or importation of products can potentially result in lost revenues as our customers require receipt of our products in set seasonal timeframes. If we are unable to deliver products during these required timeframes, we may lose the sale.
and if the products are seasonal, we may also have to markdown the value of the inventory as it may be unsaleable.

The estimate includes many components. Lost revenues estimates assume product sourcing for 1 season (bi-annual) from a hypothetical high-climate risk country is completely eliminated. Hypothetical country production volume of 25M units is estimated based on the high-climate related risk countries’ general bi-annual production amount. Assumes 2/5ths of lost production, resulting in no sales, with the remaining 3/5ths evenly split between being sourced at 25% higher cost from other countries, destroyed, and already produced and not impacted. Using our global split of wholesale and direct-to-consumer revenues, estimated lost revenue would be ~$280M, with a gross margin impact of ~$160M. The incremental cost to move production would result in higher cost of goods sold of ~$10M. We also estimate inventory markdown charges and inventory and raw material write-offs for potentially destroyed inventory held in factories, distribution centers or while in route of $60M. The total financial impact is estimated at $230M ($160M + $10M + $60M). The high end of the range assumes worse case scenarios impacting a hypothetical country, with minimal to no mitigating factors, and the low end of the range estimated at 0 cost assumes no severe event occurs. This estimated potential financial impact range is highly judgmental and is subsequently subject to change.

Cost of response to risk

1,000,000

Description of response and explanation of cost calculation

Case Study:
Situation: LS&Co. has included suppliers in its science-based target (SBT) with a goal to reduce absolute Scope 3 emissions from purchased goods and services by 40 percent by 2025 from a 2016 base-year.
Task: To meet our corporate sustainability objectives to reduce Greenhouse Gas (GHG) emissions and water use in our supply chain, Levi Strauss & Co. signed a $2 million cooperation agreement with the International Finance Corporation (IFC), a member of the World Bank Group, of which LS&Co. is responsible for $1 M. Therefore, the cost of response to this risk is the $1 M invested into our agreement with IFC. Under this agreement, which follows IFC’s Partnership for Cleaner Textiles (PaCT) approach, IFC is working with 55 designated LS&Co. suppliers and mills to reduce GHG emissions by helping suppliers identify and implement appropriate renewable energy and water saving interventions across 10 countries – Pakistan, Bangladesh, Sri Lanka, India, Mexico, Lesotho, Colombia, Turkey, Egypt, and Vietnam.
Action: In 2016, we conducted our first qualitative physical climate risk assessment. In 2019, we expanded our assessment to include transition risks for five key geographic regions representing 56% of LS&Co. supplier global factory and 59% of global mill production: Bangladesh, China, India, Mexico, and Pakistan. In 2022, we further expanded this assessment to include 9 regions representing a majority of supplier and mill global production. The analysis helped to prioritize supplier engagement and management efforts and focus risk mitigation actions. We are
currently planning to engage 3-5 more suppliers in 2023.
Result: Between 2017 – 2021, suppliers participating in PaCT were able reduce water and energy by an annual average of 4% and 7%, respectively, and save $4 million in operating costs. These initiatives serve as a key component in LS&Co.’s strategy to reduce risks associated with reduced production capacity resulting from increased frequency and severity of extreme weather events such as acute droughts, cyclones, and floods by reducing resource demands for engaged suppliers.

Comment
No additional comments.

### C2.4

(C2.4) Have you identified any climate-related opportunities with the potential to have a substantive financial or strategic impact on your business?

Yes

### C2.4a

(C2.4a) Provide details of opportunities identified with the potential to have a substantive financial or strategic impact on your business.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Opp1</th>
</tr>
</thead>
</table>

**Where in the value chain does the opportunity occur?**

Upstream

**Opportunity type**

Resource efficiency
Primary climate-related opportunity driver
Use of more efficient production and distribution processes

Primary potential financial impact
Reduced direct costs

Company-specific description
While we have demonstrated leadership through our efforts in our own operations, we are also aware that the apparel industry’s biggest climate impact is in the supply chain. Over the last several years we have piloted innovative programs aimed at reducing our environmental impact in the supply chain and are excited by the results and the opportunity to scale those programs. For example, in 2017, we piloted the International Finance Corporation’s Partnership for Cleaner Textile (PaCT) program. Through IFC’s Partnership for Cleaner Textiles (PaCT) approach, as of 2022 IFC is working with 55 designated LS&Co. suppliers and mills to reduce GHG emissions by helping suppliers identify and implement appropriate renewable energy and water saving interventions across 10 countries – Pakistan, Bangladesh, Sri Lanka, India, Mexico, Lesotho, Colombia, Turkey, Egypt, and Vietnam. Between 2017 – 2021, participating suppliers have been able to reduce water and energy by an estimated annual average of 4% and 7%, respectively, and save $4 million in operating costs. LS&Co., and the apparel industry at large, source products in many developing countries where water is scarce. In 2022, approximately 40% of LS&Co.’s key supplier facilities were located in high water-stressed geographies per the WRI Aqueduct tool. With climate change promising to alter precipitation, induce more severe droughts and intensify water scarcity, there exists a clear window of opportunity to help our manufacturers reduce their dependence on threatened local water supplies by implementing systems that recycle and reuse water. This self-sufficiency at the manufacturing level diminishes water availability risks, allows for stable production and long-term cost savings.

Time horizon
Medium-term

Likelihood
Very likely

Magnitude of impact
Medium-low

Are you able to provide a potential financial impact figure?
Yes, an estimated range

**Potential financial impact figure (currency)**

**Potential financial impact figure – minimum (currency)**
1,000,000

**Potential financial impact figure – maximum (currency)**
10,000,000

**Explanation of financial impact figure**

Through IFC’s Partnership for Cleaner Textiles (PaCT) approach, IFC has worked with 55 designated LS&Co. suppliers and mills to reduce GHG emissions by helping suppliers identify and implement appropriate renewable energy and water saving interventions across 10 countries – Pakistan, Bangladesh, Sri Lanka, India, Mexico, Lesotho, Colombia, Turkey, Egypt, and Vietnam. The project follows the success of a 2017 pilot between the two organizations. During the one-year pilot, we helped participating 6 suppliers reduce GHG emissions and energy by 13 percent and 22 percent respectively and save more than $1 million in their operating costs.

The low-end of the reported financial impact range assumes no additional cost savings beyond the approximate savings achieved through the pilot project ($1M). The high end reported potential financial impact figure assumes that decreased operating costs from the pilot program will be representative of the cost savings achieved by the additional suppliers designated for the program. Given that this program was piloted with approximately 10% of the total designated suppliers, we conservatively estimate the total cost reduction would be 10x that achieved by the pilot, resulting in approximately $10 million in savings ($1M*10=$10M). This estimated potential financial impact range is based on the professional judgment and is subsequently subject to change.

**Cost to realize opportunity**
1,000,000

**Strategy to realize opportunity and explanation of cost calculation**

Case Study:
Situation: LS&Co. has included suppliers in its science-based target (SBT) with a goal to reduce absolute Scope 3 emissions from purchased goods and services 40 percent by 2025 from a 2016 base-year.
Task: To meet our corporate sustainability objectives to reduce Greenhouse Gas (GHG) emissions and water use in our supply chain, Levi Strauss & Co. signed a $2 million cooperation agreement with the International Finance Corporation (IFC), a member of the World Bank Group, in of which LS&Co. is responsible for $1 M as part of IFC’s Partnership for Cleaner Textiles (PaCT) approach. Therefore, the cost calculation to realize this opportunity is $2 million/2=$1 million. IFC is working with 55 designated LS&Co. suppliers and mills to reduce GHG emissions by helping suppliers identify and implement appropriate renewable energy and water saving interventions across 10 countries – Pakistan, Bangladesh, Sri Lanka, India, Mexico, Lesotho, Colombia, Turkey, Egypt, and Vietnam.

Action: IFC is working with 55 designated LS&Co. suppliers and mills to reduce GHG emissions by helping suppliers identify and implement appropriate renewable energy and water saving interventions across 10 countries – Pakistan, Bangladesh, Sri Lanka, India, Mexico, Lesotho, Colombia, Turkey, Egypt, and Vietnam.

Result: Between 2017 – 2021, participating suppliers have been able to reduce water and energy by an estimated annual average of 4% and 7%, respectively, and save $4 million in operating costs. These initiatives serve as a key component in LS&Co.’s strategy to optimize production capacity by reducing resource demands for engaged suppliers.

Comment
No additional comments.

Identifier
Opp2

Where in the value chain does the opportunity occur?
Direct operations

Opportunity type
Resource efficiency

Primary climate-related opportunity driver
Other, please specify
Participation in renewable energy programs, adoption of energy- and water-efficiency measures
Primary potential financial impact
Reduced indirect (operating) costs

Company-specific description
LS&Co. recognizes that greenhouse gas (GHG) emissions are a major contributor to global climate change. If left unchecked, these emissions will trigger large-scale economic, social, and environmental consequences for our business and the communities in which we operate. Within our operations globally, we are committed to reducing our energy use and related GHG emissions. Of LS&Co.’s total company carbon footprint, 75 percent comes from electricity bought for owned or leased properties, of which, the Hebron, Canton and Henderson sites are the largest in terms of square feet and energy usage (the balance is made up of natural gas, heating oil, and steam). Based on a 2017 assessment, we have determined we can achieve 100 percent renewable electricity in our owned and leased operations by 2025 through deployment of a combination of renewable electricity options to optimize cost, performance, and impact across regions. As of 2022, LS&Co. has achieved over 85 percent of our total electricity as renewable. Our path toward 100 percent renewable electricity includes: (1) implement energy efficiency measures globally, (2) transition to renewable energy sources, including implementing onsite solar and investing in power purchase agreements (PPAs & VPPAs), and (3) purchase renewable energy certificates (RECs). LS&Co. implemented a sizeable LED lighting replacement project in the UK distribution center that is anticipated to yield annual energy savings of almost 240 MWh.

Time horizon
Short-term

Likelihood
Virtually certain

Magnitude of impact
Medium-low

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure – minimum (currency)
Potential financial impact figure – maximum (currency)
10,000,000

Explanation of financial impact figure
Potential financial impacts from implementing energy efficiency measures are related to annual savings in electricity usage across identified energy efficiency initiatives with a payback period of less than 3 years as identified in LS&Co.’s 2017 study of renewable energy and energy efficiency opportunities. The study looked at LS&Co.’s owned and operated plants, retail locations, distribution centers, and offices and included initiatives such as LED lighting rollouts and HVAC upgrades. The low end of the range represents one year of annual savings ($1 million) and the high-end of the range assumes these savings are continually realized for a 10-year period ($10 million). Therefore, the formula is $1M x 10-year period = $10M. This estimated potential financial impact range is based on the professional judgment and is subsequently subject to change.

Cost to realize opportunity
3,000,000

Strategy to realize opportunity and explanation of cost calculation
Situation: LS&Co. recognizes that GHG emissions are a major contributor to global climate change. If left unchecked, these emissions will trigger large-scale economic, social, and environmental consequences for our business and the communities in which we operate.

Task: We have targeted energy efficiency projects in our offices, retail stores, and distribution centers including lighting upgrades, HVAC upgrades, deployment of energy management system upgrades, among others. We track global emissions and water data to identify hotspots and prioritize locations for energy and water efficiency, related initiatives. The cost to realize this opportunity ($3M) is based on capital cost estimates from LS&Co.’s study of RE and energy efficiency projects with a payback period of less than 2.5 years. The majority of the $3M capital cost estimate is related to LED upgrades. These initiatives address multiple risks and opportunities, but since we are unable to allocate across all risks and opportunities, we have reported the full estimated cost.

Action: In 2022, we participated in a first-of-its-kind aggregated supply chain initiative which commissioned enough RE to power 100% of LS&Co.’s U.S. energy load through 2035. We partnered with 6 other Walmart suppliers to pool our operational energy demand and co-finance the construction of a new wind farm in Kansas through a long-term, fixed-rate offtake agreement. We see this as an opportunity to reduce our
long-term operating costs as well as an opportunity to enhance our reputation and improve the resiliency of our operations.

Result: As a key to achieving our new science based GHG target, we upgraded 90% of lighting to LED at our Plock, Poland facility. We’ll save ~750 MWh/year for the full system, and in 2018 the factory received an award from the Polish National Energy Conservation Agency. In 2020, LS&Co. installed solar panels in our Henderson, NV distribution center providing ~20% of its electricity needs. The building is also certified Platinum Leadership in Energy and Design (LEED) and was the largest distribution center to receive that accreditation at the time. This upgrade helps to maintain its LEED Platinum status, making it the 1st facility in the apparel industry and 2nd in the US to be recognized with such certification. In 2021, we performed LED replacements at our MS and UK distribution center, saving a projected combined ~240,000 kWh. As of 2022, 90%+ of our total electricity was renewable.

Comment
No additional comments.

C3. Business Strategy

C3.1

(C3.1) Does your organization’s strategy include a climate transition plan that aligns with a 1.5°C world?

Row 1

Climate transition plan
No, but our strategy has been influenced by climate-related risks and opportunities, and we are developing a climate transition plan within two years

Explain why your organization does not have a climate transition plan that aligns with a 1.5°C world and any plans to develop one in the future
In 2018, LS&Co. published a climate action strategy for reducing carbon emissions by 2025. The climate action strategy serves as a roadmap for what we plan to do and how we plan to do it through achievable science-based targets across our operations and entire global supply chain,
which are incorporated into our long-term financial and strategic business plans. In 2022, LS&Co. completed its climate scenario modeling. We believe this is a critical step to identify the most significant risks and opportunities for our company that can then inform a transition plan. In 2023, LS&Co. is working to develop a climate transition plan aligned to the CDP framework and reflective of the necessary actions required to align with a 1.5°C world. The CDP aligned Climate Transition Plan will be published by the end of 2023.

**C3.2**

(C3.2) Does your organization use climate-related scenario analysis to inform its strategy?

<table>
<thead>
<tr>
<th>Use of climate-related scenario analysis to inform strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
</tr>
</tbody>
</table>

**C3.2a**

(C3.2a) Provide details of your organization’s use of climate-related scenario analysis.

<table>
<thead>
<tr>
<th>Climate-related scenario</th>
<th>Scenario analysis coverage</th>
<th>Temperature alignment of scenario</th>
<th>Parameters, assumptions, analytical choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition scenarios IEA NZE 2050</td>
<td>Company-wide</td>
<td></td>
<td>LS&amp;Co. considered a rapid transition scenario characterized by stringent climate policies and major shifts to markets and technology. The timeframe evaluated was 2030 and 2050. The transition scenarios were inclusive of all our brands, across 9 selected geographies and included assessment across the value chain from raw material production, manufacturing, and own operations. Risks and opportunities were evaluated across the following risk and opportunity types: Market, Policy, Technology, Reputation, Legal, Resource efficiency, Energy source, Products and services, Markets, and Resilience. Assessment was based on a range of source data including primary data informing the scenario assessment regarding product units, sourcing and supplier base geographies, emissions, supply chain stages, and revenue models. The rapid transition model was built on a range of external datasets from International Energy Agency, regional and national and sector specific scenarios, projections and strategies, industry outlooks, scientific papers, and country level scenario studies.</td>
</tr>
</tbody>
</table>
Through this work we identified 25 hotspots which were then prioritized with senior leadership into top transition risks and opportunities.

| Physical climate scenarios RCP 8.5 | Company-wide | LS&Co. considered a high physical impact climate change scenario that brings significant changes to climate and weather conditions. Developed utilizing an RCP 8.5 aligned 4C warming by 2100. The timeframe evaluated was 2030 and 2050. The transition scenarios were inclusive of all our brands, across 9 selected geographies and included assessment across the value chain from raw material production, manufacturing, and own operations. Risks and opportunities were evaluated across the following risk and opportunity types: Market, Policy, Technology, Reputation, Legal, Resource efficiency, Energy source, Products and services, Markets, and Resilience. Assessment was based on a range of source data including primary data informing the scenario assessment regarding product units, sourcing and supplier base geographies, emissions, supply chain stages, and revenue models. The rapid transition model was built on a range of external datasets from NASAs NEX-GDDP, GCM and CMIP5. Through this work we identified 25 hotspots which were then prioritized with senior leadership into top physical risks and opportunities. |

C3.2b

(C3.2b) Provide details of the focal questions your organization seeks to address by using climate-related scenario analysis, and summarize the results with respect to these questions.

Row 1

Focal questions

How could climate related physical and transition risk plausibly affect our company?

Results of the climate-related scenario analysis with respect to the focal questions

1. The risk of climate change to cotton production in the US is very high by 2050, while in China rising temperatures and CO2 concentrations could have a positive impact on cotton growing through 2050. Acute weather events can severely limit positive impacts due to rising temperatures and CO2 concentrations. As the significant impact of weather-related events in the wider southeast Asia region are already being experienced, the future magnitude of projected change is expected to be less pronounced. This information further informs our sourcing and
investment strategy. As a result of these findings, LS&Co. has made investments in regenerative agriculture, such as the Organic Cotton Accelerator, and participation in the US Cotton Trust Protocol.

2. Heat extremes may increase power usage for cooling at a very high rate in regions such as China, Europe and the US through 2050. The extremes are expected to increase in frequency and intensity. Based on these regions and our own operations additional review and investment of cooling technologies will be evaluated. Heat extremes in key manufacturing regions is also considered very high in Mexico and Pakistan and high in Bangladesh and China and are also expected to increase in frequency and intensity going forward. While risk does vary by country, we will leverage our PACT supplier engagement program to focus on interventions that transition to renewable energy and energy efficient technologies considering potential power curtailment.

3. Opportunities include an increase in demand for circular products, growth, and utilization of energy efficient upgrades. As regulations emerge, we could expect to see a demand for circular business models and growth in recycling technologies. Opportunities to scale circular services, design innovation for recycling and traceability could contribute to revenue advantages. Additionally, in a 1.5C transition we expect to see technological advances of improved efficiency for electrification and declining costs for renewables which could reduce operational costs in our own facility and leased portfolio. Key to enabling this will be supportive policies and a regulatory landscape.

**C3.3**

(C3.3) Describe where and how climate-related risks and opportunities have influenced your strategy.

<table>
<thead>
<tr>
<th>Have climate-related risks and opportunities influenced your strategy in this area?</th>
<th>Description of influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products and services</td>
<td>Yes LS&amp;Co.’s product strategy has been influenced by climate-related risks and opportunities. Our life cycle assessments (LCAs) and climate scenario modeling demonstrate that we have significant resource requirements and climate-related risks that impact all phases of our product life cycles, with specific concern on material inputs. Using this information, we increased our focus on the relative water intensity of cotton production (strategic decision informed by this climate-related scenario analysis) as well as investments in regenerative agriculture such as the Organic Cotton Accelerator. The most substantial strategic product-related decision to date that has been influenced by climate-related risks is to develop and invest in the WaterLess® product line, which significantly reduces water usage in production. We have also open sourced the WaterLess® techniques so others can use it to save water in their products</td>
</tr>
</tbody>
</table>
Additionally, another product strategy influenced by climate-related scenario analysis is our continued promotion and support for The Better Cotton Initiative (BCI), US Cotton Trust Protocol, and Organic Cotton Accelerator which empowers cotton farmers to increase their yields through less water and less chemical use and invest in regenerative farming techniques. In 2022, we sourced 99.5 percent of our total cotton through BCI.

In 2022, we launched the circular 501 jeans, which is a subset within our broader assortment of 501 jeans. We blended certified organic cotton with Re:NewCell’s pioneering Circulose® fiber, a sustainably sourced viscose made in part from post-consumer recycled denim and textiles. We also continue to operate our Levi’s® SecondHand which is both a buy-back and resale platform. Buying a used pair of Levi’s® jeans saves approximately 80% of the carbon emissions compared to buying a new pair, according to ThredUp. Continuing to invest in sustainable materials as well as circularity are examples of how climate related risks and opportunities are influencing our strategy.

Timeframe: Short- and medium term (current through 5-7 years into the future).

We anticipate the magnitude of impact on products and services from climate-related risks and opportunities to be medium to high.

Supply chain and/or value chain

| Yes |
| LS&Co.’s supply chain strategy has been influenced by climate-related risks and opportunities because we import both raw materials and finished garments into all of our operating regions and the success of our business depends on our supplier network. Our ability to import products in a timely and cost-effective manner may be affected by extreme weather conditions such as heat extremes, water shortages, riverine and coastal flooding and cyclones that can affect transportation and warehousing providers, such as port and shipping capacity, labor disputes, political unrest, or additional security requirements globally. Our existing procurement processes take many variables into consideration and continually adjust to mitigate risks, which include climate-related risks. To identify, assess, and evaluate our upstream climate-related risk exposure, we conducted physical and transition climate risk assessments across our supply chain in 2022. This identified that climate change impacts such as heat extremes, water shortages, and other extreme weather events can have a significant impact on our operations. |
extremes were high to very high in key sourcing regions.

Timeframe: Short- and medium term (current through 5-7 years into the future).

The most substantial strategic supply chain-related decision that has been influenced by climate-related risks and opportunities is our commitment to suppliers reducing the equivalent of 40% of LS&Co.’s Category 1 Scope 3 emissions by 2025 from a 2016 base-year. To this end, in 2017, we piloted the International Finance Corporation’s Partnership for Cleaner Textile (PaCT) program through which we provide suppliers with technical expertise and access to low-cost financing to support renewable energy and water-saving interventions. Between 2017 – 2021, participating suppliers have been able to reduce water and energy by an annual average of 4% and 7%, respectively, and save $4 million in operating costs. Within the next 1-3 years, we will engage the remainder of our key wet processing suppliers. We will leverage the IFC Global Trade Supplier Finance program which enables suppliers to access competitively priced financing based on criteria such as strong performance on our Terms of Engagement (LS&Co.’s supplier code of conduct) as well as the demonstrated investment of 60% of financing proceeds towards identified PaCT interventions.

<table>
<thead>
<tr>
<th>Investment in R&amp;D</th>
<th>Yes</th>
</tr>
</thead>
</table>

LS&Co.’s strategy for investment in R&D has been influenced by climate-related risks and opportunities because our collaborative approach to research and sustainable apparel design has produced several environmental breakthroughs for our brands, including reducing water used in the finishing process, increasing the use of cotton farmed to higher environmental, social and economic standards, and increasing the amount of recycled materials in our products and improved chemistry. Timeframe: Short- and medium term (current through 5-7 years into the future).

The most substantial strategic operations-related decision that has been influenced by climate-related risks and opportunities is to develop and invest into low-water product lines, such as WaterLess® and our latest Levi’s® WellThread® line. Our innovative WaterLess® process reduces the amount of water used in finishing by removing water from stone washes or combining multiple wet cycle processes. We can significantly reduce water usage — up to 96% for some product styles. Our Levi’s® WaterLess® collection features fabric and the first-ever commercialized use of “cottonized hemp,” which uses far
In 2022, we launched the circular 501 jeans. We blended certified organic cotton with Renewcell’s pioneering Circulose® fiber, a sustainably sourced viscose made in part from post-consumer recycled denim and textiles. We collaborated with Re:NewCell to develop a groundbreaking denim which features organic cotton and Circulose® fiber, which is made from worn-out jeans and sustainably sourced viscose. We’ve taken meaningful steps, launching initiatives that use and scale more sustainable fibers, such as introducing WellThread® jeans with recycled Circulose® fiber, increasing cottonized hemp use across our product assortment, and continuing to support development of cultivation methods that use less water, involve fewer pesticides, and promote healthy soil.

<table>
<thead>
<tr>
<th>Operations</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS&amp;Co.’s operations strategy has been influenced by climate-related risks and opportunities, because we see an opportunity in reducing our operating costs through energy and water efficiency measures as well as in enhancing our reputation and improving the resilience of our operations.</td>
<td></td>
</tr>
<tr>
<td>Timeframe: Short- and medium term (current through 5-7 years into the future).</td>
<td></td>
</tr>
<tr>
<td>In 2022, LS&amp;Co. deployed a Global Energy Management System increasing visibility to energy usage and costs throughout our operations. This visibility increases our ability to engage in meaningful dialogue with facility managers and develop tangible site-specific action programs to reduce energy usage. Climate related risks such as cooling in our operations will be considered going forward as a result of the scenario assessment.</td>
<td></td>
</tr>
</tbody>
</table>
| Examples of investment in our owned-and-operated facilities include our factory in Plock, Poland, where we upgraded 90% of our lighting to LED lights. We estimate energy savings to be 750 MWh/year for the full system, and, in 2018, the factory received an award from the Polish National Energy Conservation Agency for energy efficiency efforts. In 2020, LS&Co. installed a new solar panel array at our distribution center in Henderson, Nevada that provides about 20% of the facility’s electricity needs. The panels were built carport-style to provide shade for employees. The building is also certified Platinum Leadership in Energy and Design (LEED) and was the largest distribution center to receive that
accreditation at the time of its initial certification. This upgrade will help the site to maintain its LEED Platinum status, making it the first facility in the apparel industry and second in the country to be recognized with such certification. And in 2021, LS&Co. performed an LED lighting replacement in the mezzanine and retail area of our Canton, MS distribution center. The LED lighting replacement covered ~125 thousand square feet with a projected annual energy savings of 730 kWh. LS&Co. implemented a sizeable LED lighting replacement project in the UK distribution center that is anticipated to yield annual energy savings of almost 240 MWh.

**C3.4**

**(C3.4) Describe where and how climate-related risks and opportunities have influenced your financial planning.**

<table>
<thead>
<tr>
<th>Financial planning elements that have been influenced</th>
<th>Description of influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenues</td>
<td>Revenues: As we work to meet the needs and shifting preferences of our customers around the world, we have an opportunity to develop new products which will give us a better competitive position and continue to solidify our position as an apparel industry leader, while driving revenues. As part of LS&amp;Co.’s ongoing effort to reduce the impact of our source materials, we have long been investigating and innovating new fiber and fabric strategies that we believe can deliver more sustainable products. WaterLess® Case Studies include: our commitment to the Ellen MacArthur Jean Redesign Guidelines where we deliver more sustainable products to market, which includes but is not limited to maintaining water volume at less than 30 liters/meter. Additionally in 2022, we launched into the market, the circular 501 jeans. We blended certified organic cotton with Re:NewCell’s pioneering Circulose® fiber, a sustainably sourced viscose made in part from post-consumer recycled denim and textiles. We also maintain our SecondHand buyback and resale platform. We conduct market research to understand our consumers’ preferences which influences our product offerings and revenue forecasts.</td>
</tr>
<tr>
<td>Indirect costs</td>
<td>Indirect costs: We see incorporating climate-based analysis as an opportunity to reduce our operating costs through energy and water efficiency measures. In 2022, LS&amp;Co. rolled out a Global Energy Management system which allows for</td>
</tr>
<tr>
<td>Capital expenditures</td>
<td></td>
</tr>
</tbody>
</table>
Improved management of energy data and crucially allows LS&Co. to analyze potential financial investments for focused site-level interventions. Based on insights from this system, LS&Co. performed LED lighting replacements in 2021 in the Canton, MS and Northampton, UK distribution centers. The LED lighting replacement in the UK distribution center is anticipated to yield annual energy savings of almost 240 MWh. In the short-term, we expect a slight increase in costs due to these capital expenditures related to energy efficiency but in the long-term we expect to see a significant reduction in energy-related costs. These assumptions have been incorporated into our financial plans. The magnitude of impact on our financial plans for operating costs is low to medium. Time horizon: Current (up to 1 year).

Capital expenditures: All major capital investments must go through a rigorous review process, including consideration of sustainability impacts of these investments. For example, in 2021, the Board authorized the investment in LS&Co.’s sixth distribution center in Europe, which will address the region’s growth and capacity needs and feature responsible design features inspired by Cradle to Cradle® principles. Sustainability requirements were a key consideration in the authorization for this project that broke ground in 2022. To secure funding for smaller capital expenditure projects, we must perform financial analysis on each of the energy or emissions reduction initiatives that are scoped for our global facilities. We have certain payback criteria for capital projects that must be achieved for funds to be allocated from the total company financial plan, for example, all the following implemented initiatives required capital expenditures: HVAC upgrades, installation of Energy Management Systems, boiler, and lighting upgrades (Plock facility), and installation of an automated energy efficient conveyor belt system and water recycling system (Henderson, Nevada distribution center). When capital projects are needed to our facilities, we look for opportunities for additional energy and water efficiency. These factors influence which projects are approved. The magnitude of impact on our financial planning for capital expenditures is medium. Time horizon: Current (up to 1 year).

C3.5

(C3.5) In your organization’s financial accounting, do you identify spending/revenue that is aligned with your organization’s climate transition?

<table>
<thead>
<tr>
<th>Identification of spending/revenue that is aligned with your organization’s climate transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
</tr>
<tr>
<td>No, but we plan to in the next two years</td>
</tr>
</tbody>
</table>
C4. Targets and performance

C4.1

(C4.1) Did you have an emissions target that was active in the reporting year?
   Absolute target

C4.1a

(C4.1a) Provide details of your absolute emissions target(s) and progress made against those targets.

<table>
<thead>
<tr>
<th>Target reference number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abs 1</td>
</tr>
</tbody>
</table>

Is this a science-based target?
   Yes, and this target has been approved by the Science Based Targets initiative

Target ambition
   1.5°C aligned

Year target was set
   2017

Target coverage
   Business division

Scope(s)
   Scope 1
   Scope 2
Scope 2 accounting method
   Market-based

Scope 3 category(ies)

Base year
   2016

Base year Scope 1 emissions covered by target (metric tons CO2e)
   7,243.12

Base year Scope 2 emissions covered by target (metric tons CO2e)
   42,704.25

Base year Scope 3, Category 1: Purchased goods and services emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 2: Capital goods emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2) emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 4: Upstream transportation and distribution emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 5: Waste generated in operations emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 6: Business travel emissions covered by target (metric tons CO2e)
Base year Scope 3, Category 7: Employee commuting emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 8: Upstream leased assets emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 9: Downstream transportation and distribution emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 10: Processing of sold products emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 11: Use of sold products emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 12: End-of-life treatment of sold products emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 13: Downstream leased assets emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 14: Franchises emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 15: Investments emissions covered by target (metric tons CO2e)

Base year Scope 3, Other (upstream) emissions covered by target (metric tons CO2e)

Base year Scope 3, Other (downstream) emissions covered by target (metric tons CO2e)
Base year total Scope 3 emissions covered by target (metric tons CO2e)

Total base year emissions covered by target in all selected Scopes (metric tons CO2e)
49,947

Base year Scope 1 emissions covered by target as % of total base year emissions in Scope 1
100

Base year Scope 2 emissions covered by target as % of total base year emissions in Scope 2
100

Base year Scope 3, Category 1: Purchased goods and services emissions covered by target as % of total base year emissions in Scope 3, Category 1: Purchased goods and services (metric tons CO2e)

Base year Scope 3, Category 2: Capital goods emissions covered by target as % of total base year emissions in Scope 3, Category 2: Capital goods (metric tons CO2e)

Base year Scope 3, Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2) emissions covered by target as % of total base year emissions in Scope 3, Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2) (metric tons CO2e)

Base year Scope 3, Category 4: Upstream transportation and distribution covered by target as % of total base year emissions in Scope 3, Category 4: Upstream transportation and distribution (metric tons CO2e)

Base year Scope 3, Category 5: Waste generated in operations emissions covered by target as % of total base year emissions in Scope 3, Category 5: Waste generated in operations (metric tons CO2e)
Base year Scope 3, Category 6: Business travel emissions covered by target as % of total base year emissions in Scope 3, Category 6: Business travel (metric tons CO2e)

Base year Scope 3, Category 7: Employee commuting covered by target as % of total base year emissions in Scope 3, Category 7: Employee commuting (metric tons CO2e)

Base year Scope 3, Category 8: Upstream leased assets emissions covered by target as % of total base year emissions in Scope 3, Category 8: Upstream leased assets (metric tons CO2e)

Base year Scope 3, Category 9: Downstream transportation and distribution emissions covered by target as % of total base year emissions in Scope 3, Category 9: Downstream transportation and distribution (metric tons CO2e)

Base year Scope 3, Category 10: Processing of sold products emissions covered by target as % of total base year emissions in Scope 3, Category 10: Processing of sold products (metric tons CO2e)

Base year Scope 3, Category 11: Use of sold products emissions covered by target as % of total base year emissions in Scope 3, Category 11: Use of sold products (metric tons CO2e)

Base year Scope 3, Category 12: End-of-life treatment of sold products emissions covered by target as % of total base year emissions in Scope 3, Category 12: End-of-life treatment of sold products (metric tons CO2e)

Base year Scope 3, Category 13: Downstream leased assets emissions covered by target as % of total base year emissions in Scope 3, Category 13: Downstream leased assets (metric tons CO2e)
Base year Scope 3, Category 14: Franchises emissions covered by target as % of total base year emissions in Scope 3, Category 14: Franchises (metric tons CO2e)

Base year Scope 3, Category 15: Investments emissions covered by target as % of total base year emissions in Scope 3, Category 15: Investments (metric tons CO2e)

Base year Scope 3, Other (upstream) emissions covered by target as % of total base year emissions in Scope 3, Other (upstream) (metric tons CO2e)

Base year Scope 3, Other (downstream) emissions covered by target as % of total base year emissions in Scope 3, Other (downstream) (metric tons CO2e)

Base year total Scope 3 emissions covered by target as % of total base year emissions in Scope 3 (in all Scope 3 categories)

Base year emissions covered by target in all selected Scopes as % of total base year emissions in all selected Scopes

100

Target year

2025

Targeted reduction from base year (%)

90

Total emissions in target year covered by target in all selected Scopes (metric tons CO2e) [auto-calculated]

4,994.7

Scope 1 emissions in reporting year covered by target (metric tons CO2e)
<table>
<thead>
<tr>
<th>Category</th>
<th>Emissions (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope 2 emissions in reporting year covered by target</td>
<td>9,884.42</td>
</tr>
<tr>
<td>Scope 3, Category 1: Purchased goods and services emissions</td>
<td>4,789.171</td>
</tr>
<tr>
<td>Scope 3, Category 2: Capital goods emissions</td>
<td></td>
</tr>
<tr>
<td>Scope 3, Category 3: Fuel-and-energy-related activities</td>
<td></td>
</tr>
<tr>
<td>Scope 3, Category 4: Upstream transportation and distribution emissions</td>
<td></td>
</tr>
<tr>
<td>Scope 3, Category 5: Waste generated in operations emissions</td>
<td></td>
</tr>
<tr>
<td>Scope 3, Category 6: Business travel emissions</td>
<td></td>
</tr>
<tr>
<td>Scope 3, Category 7: Employee commuting</td>
<td></td>
</tr>
<tr>
<td>Scope 3, Category 8: Upstream leased assets emissions</td>
<td></td>
</tr>
<tr>
<td>Scope 3, Category 9: Downstream transportation and distribution emissions</td>
<td></td>
</tr>
</tbody>
</table>
Scope 3, Category 10: Processing of sold products emissions in reporting year covered by target (metric tons CO2e)

Scope 3, Category 11: Use of sold products emissions in reporting year covered by target (metric tons CO2e)

Scope 3, Category 12: End-of-life treatment of sold products emissions in reporting year covered by target (metric tons CO2e)

Scope 3, Category 13: Downstream leased assets emissions in reporting year covered by target (metric tons CO2e)

Scope 3, Category 14: Franchises emissions in reporting year covered by target (metric tons CO2e)

Scope 3, Category 15: Investments emissions in reporting year covered by target (metric tons CO2e)

Scope 3, Other (upstream) emissions in reporting year covered by target (metric tons CO2e)

Scope 3, Other (downstream) emissions in reporting year covered by target (metric tons CO2e)

Total Scope 3 emissions in reporting year covered by target (metric tons CO2e)

Total emissions in reporting year covered by target in all selected scopes (metric tons CO2e)

14,673
Does this target cover any land-related emissions?
No, it does not cover any land-related emissions (e.g. non-FLAG SBT)

% of target achieved relative to base year [auto-calculated]
78.4698447021

Target status in reporting year
Underway

Please explain target coverage and identify any exclusions
SBTi approved our new 2025 Science-Based Targets in July 2018. Our target includes a 90% reduction in Scope 1 and 2 emissions.

Plan for achieving target, and progress made to the end of the reporting year
There are planned energy efficiency equipment and infrastructure upgrades in our Distribution Centers that will reduce our energy consumption. Example projects planned include LED lighting upgrades, and replacement to more energy efficiency equipment such as air compressors. In place is a monthly energy review at select Distribution Center’s to measure and monitor energy consumption and efficiency or reduction opportunities.

Retail sustainability core groups are established in each cluster we operate to measure, monitor and manage energy and emissions. Example focus activities have included regular portfolio energy reviews, requesting select locations to adjust HVAC set points to align with energy sobriety regulations in France and Spain, operational guidance to turn off lighting in the stockroom areas, and sustainability training materials that are available to store staff. We have piloted operational changes in select stores, such as assigning one person as the responsible party for managing store HVAC controls. We also plan to continue purchase of RECs/EACs and VPPA to meet our targets

List the emissions reduction initiatives which contributed most to achieving this target

Target reference number
Abs 2
Is this a science-based target?
Yes, and this target has been approved by the Science Based Targets initiative

Target ambition
Well-below 2°C aligned

Year target was set
2017

Target coverage
Company-wide

Scope(s)
Scope 3

Scope 2 accounting method

Scope 3 category(ies)
Category 1: Purchased goods and services

Base year
2016

Base year Scope 1 emissions covered by target (metric tons CO2e)

Base year Scope 2 emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 1: Purchased goods and services emissions covered by target (metric tons CO2e)
2,725,861
Base year Scope 3, Category 2: Capital goods emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2) emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 4: Upstream transportation and distribution emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 5: Waste generated in operations emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 6: Business travel emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 7: Employee commuting emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 8: Upstream leased assets emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 9: Downstream transportation and distribution emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 10: Processing of sold products emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 11: Use of sold products emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 12: End-of-life treatment of sold products emissions covered by target (metric tons CO2e)
Base year Scope 3, Category 13: Downstream leased assets emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 14: Franchises emissions covered by target (metric tons CO2e)

Base year Scope 3, Category 15: Investments emissions covered by target (metric tons CO2e)

Base year Scope 3, Other (upstream) emissions covered by target (metric tons CO2e)

Base year Scope 3, Other (downstream) emissions covered by target (metric tons CO2e)

Base year total Scope 3 emissions covered by target (metric tons CO2e)

2,725,861

Total base year emissions covered by target in all selected Scopes (metric tons CO2e)

2,725,861

Base year Scope 1 emissions covered by target as % of total base year emissions in Scope 1

Base year Scope 2 emissions covered by target as % of total base year emissions in Scope 2

Base year Scope 3, Category 1: Purchased goods and services emissions covered by target as % of total base year emissions in Scope 3, Category 1: Purchased goods and services (metric tons CO2e)

100

Base year Scope 3, Category 2: Capital goods emissions covered by target as % of total base year emissions in Scope 3, Category 2: Capital goods (metric tons CO2e)
Base year Scope 3, Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2) emissions covered by target as % of total base year emissions in Scope 3, Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2) (metric tons CO2e)

Base year Scope 3, Category 4: Upstream transportation and distribution covered by target as % of total base year emissions in Scope 3, Category 4: Upstream transportation and distribution (metric tons CO2e)

Base year Scope 3, Category 5: Waste generated in operations emissions covered by target as % of total base year emissions in Scope 3, Category 5: Waste generated in operations (metric tons CO2e)

Base year Scope 3, Category 6: Business travel emissions covered by target as % of total base year emissions in Scope 3, Category 6: Business travel (metric tons CO2e)

Base year Scope 3, Category 7: Employee commuting covered by target as % of total base year emissions in Scope 3, Category 7: Employee commuting (metric tons CO2e)

Base year Scope 3, Category 8: Upstream leased assets emissions covered by target as % of total base year emissions in Scope 3, Category 8: Upstream leased assets (metric tons CO2e)

Base year Scope 3, Category 9: Downstream transportation and distribution emissions covered by target as % of total base year emissions in Scope 3, Category 9: Downstream transportation and distribution (metric tons CO2e)
Base year Scope 3, Category 10: Processing of sold products emissions covered by target as % of total base year emissions in Scope 3, Category 10: Processing of sold products (metric tons CO2e)

Base year Scope 3, Category 11: Use of sold products emissions covered by target as % of total base year emissions in Scope 3, Category 11: Use of sold products (metric tons CO2e)

Base year Scope 3, Category 12: End-of-life treatment of sold products emissions covered by target as % of total base year emissions in Scope 3, Category 12: End-of-life treatment of sold products (metric tons CO2e)

Base year Scope 3, Category 13: Downstream leased assets emissions covered by target as % of total base year emissions in Scope 3, Category 13: Downstream leased assets (metric tons CO2e)

Base year Scope 3, Category 14: Franchises emissions covered by target as % of total base year emissions in Scope 3, Category 14: Franchises (metric tons CO2e)

Base year Scope 3, Category 15: Investments emissions covered by target as % of total base year emissions in Scope 3, Category 15: Investments (metric tons CO2e)

Base year Scope 3, Other (upstream) emissions covered by target as % of total base year emissions in Scope 3, Other (upstream) (metric tons CO2e)

Base year Scope 3, Other (downstream) emissions covered by target as % of total base year emissions in Scope 3, Other (downstream) (metric tons CO2e)
Base year total Scope 3 emissions covered by target as % of total base year emissions in Scope 3 (in all Scope 3 categories) 100

Base year emissions covered by target in all selected Scopes as % of total base year emissions in all selected Scopes 100

Target year 2025

Targeted reduction from base year (%) 40

Total emissions in target year covered by target in all selected Scopes (metric tons CO2e) [auto-calculated] 1,635,516.6

Scope 1 emissions in reporting year covered by target (metric tons CO2e)

Scope 2 emissions in reporting year covered by target (metric tons CO2e)

Scope 3, Category 1: Purchased goods and services emissions in reporting year covered by target (metric tons CO2e) 2,108,469

Scope 3, Category 2: Capital goods emissions in reporting year covered by target (metric tons CO2e)

Scope 3, Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2) emissions in reporting year covered by target (metric tons CO2e)

Scope 3, Category 4: Upstream transportation and distribution emissions in reporting year covered by target (metric tons CO2e)
Scope 3, Category 5: Waste generated in operations emissions in reporting year covered by target (metric tons CO2e)

Scope 3, Category 6: Business travel emissions in reporting year covered by target (metric tons CO2e)

Scope 3, Category 7: Employee commuting emissions in reporting year covered by target (metric tons CO2e)

Scope 3, Category 8: Upstream leased assets emissions in reporting year covered by target (metric tons CO2e)

Scope 3, Category 9: Downstream transportation and distribution emissions in reporting year covered by target (metric tons CO2e)

Scope 3, Category 10: Processing of sold products emissions in reporting year covered by target (metric tons CO2e)

Scope 3, Category 11: Use of sold products emissions in reporting year covered by target (metric tons CO2e)

Scope 3, Category 12: End-of-life treatment of sold products emissions in reporting year covered by target (metric tons CO2e)

Scope 3, Category 13: Downstream leased assets emissions in reporting year covered by target (metric tons CO2e)

Scope 3, Category 14: Franchises emissions in reporting year covered by target (metric tons CO2e)
Scope 3, Category 15: Investments emissions in reporting year covered by target (metric tons CO2e)

Scope 3, Other (upstream) emissions in reporting year covered by target (metric tons CO2e)

Scope 3, Other (downstream) emissions in reporting year covered by target (metric tons CO2e)

Total Scope 3 emissions in reporting year covered by target (metric tons CO2e)

2,108,469

Total emissions in reporting year covered by target in all selected scopes (metric tons CO2e)

2,108,469

Does this target cover any land-related emissions?

No, it does not cover any land-related emissions (e.g. non-FLAG SBT)

% of target achieved relative to base year [auto-calculated]

56.6235769175

Target status in reporting year

Underway

Please explain target coverage and identify any exclusions

SBTi approved our new 2025 Science-Based Targets in July 2018. LS and Co. will work with its suppliers to reduce emissions totaling 40 percent of LS and Co.’s 2016 base year Category 1 emissions under Scope 3 by 2025. We are currently in the process of updating our methodology for Category 1 emissions to incorporate emission reduction initiatives in our supply chain and better track our progress and will provide updated 2016 baseline emissions in next year’s response.

Plan for achieving target, and progress made to the end of the reporting year

We are currently in the process of updating our methodology for Category 1 emissions to incorporate emission reduction initiatives in our supply chain and better track our progress and will provide updated 2016 baseline emissions in next year’s response. Initiatives planned to reduce
emissions include working with suppliers to move towards electrification, renewable energy and continuing to move to 3rd party certified materials.

In 2017, we piloted the International Finance Corporation’s Partnership for Cleaner Textile (PaCT) program through which we provide suppliers with technical expertise and access to low-cost financing to support renewable energy and water-saving interventions. Between 2017 – 2021, participating suppliers have been able to reduce water and energy by an annual average of 4% and 7%, respectively, and save $4 million in operating costs. In 2022, LS&Co. conducted 21 PaCT assessments and 5 Apparel Impact Institute (AII) Assessments in supplier facilities. In 2023, we have 5-10 PaCT assessments and 2 AII assessments planned. Within the next 1-3 years, we will engage the remainder of our key wet processing suppliers. We will leverage the IFC Global Trade Supplier Finance program which enables suppliers to access competitively-priced financing based on criteria such as strong performance on our Terms of Engagement (LS&Co.’s supplier code of conduct) as well as the demonstrated investment of 60% of financing proceeds towards identified PaCT interventions.

List the emissions reduction initiatives which contributed most to achieving this target

**C4.2**

(C4.2) Did you have any other climate-related targets that were active in the reporting year?

Target(s) to increase low-carbon energy consumption or production

**C4.2a**

(C4.2a) Provide details of your target(s) to increase low-carbon energy consumption or production.

---

**Target reference number**

Low 1

**Year target was set**

2016

**Target coverage**
Company-wide

**Target type: energy carrier**
- Electricity

**Target type: activity**
- Consumption

**Target type: energy source**
- Renewable energy source(s) only

**Base year**
- 2016

**Consumption or production of selected energy carrier in base year (MWh)**
- 13,626.567705652

**% share of low-carbon or renewable energy in base year**
- 12.87

**Target year**
- 2025

**% share of low-carbon or renewable energy in target year**
- 100

**% share of low-carbon or renewable energy in reporting year**
- 90.22

**% of target achieved relative to base year [auto-calculated]**
- 88.7753930908

**Target status in reporting year**
Underway

Is this target part of an emissions target?
Yes, Abs1

Is this target part of an overarching initiative?
Science Based Targets initiative

Please explain target coverage and identify any exclusions
SBTi approved our new 2025 Science-Based Targets in July 2018. Our target includes 100% renewable energy in our owned and operated facilities by 2025.

Plan for achieving target, and progress made to the end of the reporting year
We continue to evaluate options to ensure renewable energy in our portfolio, including Power Purchase Agreements (PPAs), Energy Attribute Certificates (EACs), and onsite renewables. We are participating in a joint PPA that is expected to be operational by 2024 and will accelerate our progress to meet our science-based target to reduce Scope 1 and 2 emissions.

List the actions which contributed most to achieving this target

C4.3

(C4.3) Did you have emissions reduction initiatives that were active within the reporting year? Note that this can include those in the planning and/or implementation phases.
Yes

C4.3a

(C4.3a) Identify the total number of initiatives at each stage of development, and for those in the implementation stages, the estimated CO2e savings.

<table>
<thead>
<tr>
<th>Number of initiatives</th>
<th>Total estimated annual CO2e savings in metric tonnes CO2e (only for rows marked *)</th>
</tr>
</thead>
</table>
C4.3b

(C4.3b) Provide details on the initiatives implemented in the reporting year in the table below.

<table>
<thead>
<tr>
<th>Initiative category &amp; Initiative type</th>
<th>Estimated annual CO2e savings (metric tonnes CO2e)</th>
<th>Scope(s) or Scope 3 category(ies) where emissions savings occur</th>
<th>Voluntary/Mandatory</th>
<th>Annual monetary savings (unit currency – as specified in C0.4)</th>
<th>Investment required (unit currency – as specified in C0.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy efficiency in buildings</td>
<td>65</td>
<td>Scope 2 (location-based)</td>
<td>Voluntary</td>
<td>47,000</td>
<td>95,000</td>
</tr>
</tbody>
</table>
Payback period
1-3 years

Estimated lifetime of the initiative
3-5 years

Comment
LED lighting replacement project in UK Distribution Center.

C4.3c

(C4.3c) What methods do you use to drive investment in emissions reduction activities?

<table>
<thead>
<tr>
<th>Method</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliance with regulatory requirements/standards</td>
<td>We will follow compliance requirements in given markets where we operate. For example the energy sobriety measures implemented in France and Spain in 2022 were followed in order to reduce energy consumption.</td>
</tr>
<tr>
<td>Employee engagement</td>
<td>Our cluster level retail sustainability core working group forums aims to engage employees to advance operational, behavioral, process, and infra energy and emission reduction activities.</td>
</tr>
</tbody>
</table>

C4.5

(C4.5) Do you classify any of your existing goods and/or services as low-carbon products?
No

C5. Emissions methodology

C5.1

(C5.1) Is this your first year of reporting emissions data to CDP?
No
C5.1a

(C5.1a) Has your organization undergone any structural changes in the reporting year, or are any previous structural changes being accounted for in this disclosure of emissions data?

Row 1

Has there been a structural change?  
No

C5.1b

(C5.1b) Has your emissions accounting methodology, boundary, and/or reporting year definition changed in the reporting year?

<table>
<thead>
<tr>
<th>Change(s) in methodology, boundary, and/or reporting year definition?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
</tr>
</tbody>
</table>

C5.2

(C5.2) Provide your base year and base year emissions.

Scope 1

Base year start
December 1, 2015

Base year end
November 30, 2016

Base year emissions (metric tons CO2e)
7,243.13
### Scope 2 (location-based)

<table>
<thead>
<tr>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Base year start</strong></td>
</tr>
<tr>
<td>December 1, 2015</td>
</tr>
<tr>
<td><strong>Base year end</strong></td>
</tr>
<tr>
<td>November 30, 2016</td>
</tr>
<tr>
<td><strong>Base year emissions (metric tons CO2e)</strong></td>
</tr>
<tr>
<td>47,831.86</td>
</tr>
</tbody>
</table>

### Scope 2 (market-based)

<table>
<thead>
<tr>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Base year start</strong></td>
</tr>
<tr>
<td>December 1, 2015</td>
</tr>
<tr>
<td><strong>Base year end</strong></td>
</tr>
<tr>
<td>November 30, 2016</td>
</tr>
<tr>
<td><strong>Base year emissions (metric tons CO2e)</strong></td>
</tr>
<tr>
<td>42,704</td>
</tr>
</tbody>
</table>

### Scope 3 category 1: Purchased goods and services
**Base year start**
December 1, 2015

**Base year end**
November 30, 2016

**Base year emissions (metric tons CO2e)**
2,725,861

**Comment**

Emissions were calculated using a custom hybrid life cycle assessment model and database for 100% of procured direct (fashion related materials and products) and indirect (non-fashion) goods and services over the reporting period.

Purchased goods and services refers to all procured direct materials, material processing and manufacturing of fashion products as well as spend on all non-capital products and services not directly linked to sold products (indirect spend).

Emissions estimates for this Scope 3 category were calculated using procurement and inventory data in a hybrid LCA model, using a spend based analysis for indirect spend and a bottom up, mass based unit process LCA approach, modeled at the item level, for the entire fashion inventory. While LS&Co. has made significant improvements to our emission calculation methodology, this is a continuous improvement process and we will continue refining the methodology as more information becomes available.

All values represent cradle-to-vendor-gate emissions across all GHG emissions identified in the GHG Protocol Value Chain Standard, using GWP values from the IPCC Fifth Assessment Report

**Scope 3 category 2: Capital goods**

**Base year start**
December 1, 2015

**Base year end**
November 30, 2016

**Base year emissions (metric tons CO2e)**

8,618

**Comment**

Emissions were calculated using an economic input-output life cycle assessment approach for 100% of capital expenditures data over the reporting period. All values represent cradle-to-gate emissions across all GHG emissions identified in the GHG Protocol Value Chain Standard and GWP values from the IPCC Fifth Assessment Report.

---

**Scope 3 category 3: Fuel-and-energy-related activities (not included in Scope 1 or 2)**

**Base year start**  
December 1, 2015

**Base year end**  
November 30, 2016

**Base year emissions (metric tons CO2e)**

18,019

**Comment**

Emissions were calculated using data from the company’s energy consumption across owned and operated facilities. Location- and Market-based emissions factors at the regional level were derived using regional fuel mix and T&D losses reported by multiple sources, including the latest datasets from US EPA’s eGRID, the International Energy (IEA) Agency, the Canadian and Australian governments and the Association of Issuing Bodies.

Values were calculated using GWP values from the IPCC Fifth Assessment Report and represent upstream emissions from the production and transportation of fuels consumed by the company in the reporting year as well as T&D losses associated with electricity use.
Scope 3 category 4: Upstream transportation and distribution

Base year start
December 1, 2015

Base year end
November 30, 2016

Base year emissions (metric tons CO2e)
11,877

Comment
Primary cargo mass, transport mode, and distance were provided by the company’s logistics vendors for both inbound and outbound transportation. The client provided inbound data. Inbound and outbound emissions were then quantified by multiplying the provided t-km by emission factors (kg CO2e per t-km transport) provided by the logistics vendors.

Area and location data for 3PL warehouses were used to estimate annual energy consumption, based on primary data provided by client’s logistics team, of similar facilities in each region. Location data were also used to assign emission factors associated with the local electricity grid for each location to estimate emissions accordingly.

Scope 3 category 5: Waste generated in operations

Base year start
December 1, 2015

Base year end
November 30, 2016

Base year emissions (metric tons CO2e)
11,784
Comment
Emissions were calculated using an economic input-output life cycle assessment approach for 100% of waste expenditures data over the reporting period. All values represent cradle-to-gate emissions across all GHG emissions identified in the GHG Protocol Value Chain Standard and GWP values from the IPCC Fifth Assessment Report.

Scope 3 category 6: Business travel

Base year start
December 1, 2015

Base year end
November 30, 2016

Base year emissions (metric tons CO2e)
15,445

Comment
Values represent all emissions associated with purchased air travel, public transit and rental cars, as well as estimated emissions from business travel accommodations.

All emission values for air travel were provided by travel vendors.

Emissions from rental cars, public transit and travel accommodations were estimated using an economic input-out life cycle assessment approach.

All values were calculated using GWP values from the IPCC Fifth Assessment Report.

Scope 3 category 7: Employee commuting

Base year start
December 1, 2015

Base year end
  November 30, 2016

Base year emissions (metric tons CO2e)
  21,908

Comment
  For standard commuting, emissions were estimated using the total number of employees, an assumed breakdown of commuting patterns 
  (mode and distance) based on American Community Survey Reports published by the U.S. Census Bureau and average emissions factors for 
  U.S. automobiles and mass transit from WRI's GHG Protocol Calculation Tools.

  Teleworking was quantified using average household energy data from IEA, average household size from US Census data and assumptions 
  about average work area in the home and hours of work to estimate electricity consumption. This figure was then multiplied by the IEA global 
  average emission factor to quantify total emissions from telecommuting.

Scope 3 category 8: Upstream leased assets

Base year start

Base year end

Base year emissions (metric tons CO2e)

Comment
  Upstream leased assets are not applicable in the Company's business.

Scope 3 category 9: Downstream transportation and distribution
**Base year start**  
December 1, 2015

**Base year end**  
November 30, 2016

**Base year emissions (metric tons CO2e)**  
247,879

**Comment**  
Building electricity consumption per square foot of floor space for downstream retail and distribution centers was modelled using average values from owned and operating DCs and retailers. The total square footage required to house stacked products in the retail and DC buildings was estimated based on the dimensions of a representative product (pair of jeans). This value was then used to determine the overall electricity consumption for the items sold.

Downstream transportation impacts were determined using estimated garment weights for items sold and an assumed distance travelled.

**Scope 3 category 10: Processing of sold products**

**Base year start**

**Base year end**

**Base year emissions (metric tons CO2e)**

**Comment**  
Not relevant because there is no downstream processing of sold fashion.

**Scope 3 category 11: Use of sold products**
**Base year start**
December 1, 2015

**Base year end**
November 30, 2016

**Base year emissions (metric tons CO2e)**
1,388,472

**Comment**
Emissions resulting from the use of sold products were calculated for washing and drying activities associated with the use of apparel products over the average lifetime of the product. Use of sold products in apparel refer to the energy use associated with washing, drying, and other relevant activities performed on apparel products between uses.
Product lifetimes were determined in accordance with peer-reviewed literature values based on average total number of wears for a product category, e.g., t-shirts, pants, etc. and the number of wears per wash. Wears per wash were derived from survey data specific to country or region in which the product was sold. Sales region also dictated the wash water temperature and drying method.

### Scope 3 category 12: End of life treatment of sold products

**Base year start**
December 1, 2015

**Base year end**
November 30, 2016

**Base year emissions (metric tons CO2e)**
72,107.81

**Comment**
End of life treatment emissions were calculated according to the total mass of sold product in a particular region. A mix of waste management facility types, e.g., landfill, incineration, etc. were used for each country or region in which the products were sold. Primary data were not
available for reuse/recycling. Primary data is not available for this category. As such, best available assumptions were used to estimate the fate of sold products and associated emissions. Thus assumed 11% of sold products were either recycled or put another use.

**Scope 3 category 13: Downstream leased assets**

<table>
<thead>
<tr>
<th>Base year start</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Base year end</th>
<th></th>
</tr>
</thead>
</table>

**Base year emissions (metric tons CO2e)**

<table>
<thead>
<tr>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>The space that LS&amp;Co. subleases to external organizations is below significance threshold of 1% based on the extremely small footprint of these spaces.</td>
</tr>
</tbody>
</table>

**Scope 3 category 14: Franchises**

<table>
<thead>
<tr>
<th>Base year start</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 1, 2015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Base year end</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 30, 2016</td>
</tr>
</tbody>
</table>

**Base year emissions (metric tons CO2e)**

| 30,757 |

**Comment**
The reported figure represents franchise Scope 1 & 2 emissions. Primary energy data is not available for franchise facilities, so energy was estimated by using average energy per area from owned and operated facilities and then multiplied by the area of each franchise facility, as reported to the company. Emissions were then calculated by multiplying the resulting facility energy estimate by country-level emission factors from IEA.

**Scope 3 category 15: Investments**

<table>
<thead>
<tr>
<th>Base year start</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Base year end</td>
<td></td>
</tr>
<tr>
<td><strong>Base year emissions (metric tons CO2e)</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Comment</strong></td>
<td>The Company does not have significant investments as part of its core business.</td>
</tr>
</tbody>
</table>

**Scope 3: Other (upstream)**

<table>
<thead>
<tr>
<th>Base year start</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Base year end</td>
<td></td>
</tr>
<tr>
<td><strong>Base year emissions (metric tons CO2e)</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Comment</strong></td>
<td></td>
</tr>
</tbody>
</table>
Scope 3: Other (downstream)

Base year start

Base year end

Base year emissions (metric tons CO2e)

Comment

C5.3

(C5.3) Select the name of the standard, protocol, or methodology you have used to collect activity data and calculate emissions.


C6. Emissions data

C6.1

(C6.1) What were your organization’s gross global Scope 1 emissions in metric tons CO2e?

Reporting year

Gross global Scope 1 emissions (metric tons CO2e)

9,884

Start date
End date
   November 29, 2022

Comment

Past year 1

Gross global Scope 1 emissions (metric tons CO2e)
   10,703

Start date
   November 29, 2020

End date
   November 29, 2021

Comment

C6.2

(C6.2) Describe your organization’s approach to reporting Scope 2 emissions.

Row 1

Scope 2, location-based
   We are reporting a Scope 2, location-based figure

Scope 2, market-based
   We are reporting a Scope 2, market-based figure
C6.3

(C6.3) What were your organization’s gross global Scope 2 emissions in metric tons CO2e?

**Reporting year**

Scope 2, location-based
40,123

Scope 2, market-based (if applicable)
4,789

**Start date**
November 29, 2021

**End date**
November 29, 2022

**Comment**

**Past year 1**

Scope 2, location-based
39,475

Scope 2, market-based (if applicable)
6,253

**Start date**
November 29, 2020

End date
November 29, 2021

Comment

C6.4

(C6.4) Are there any sources (e.g. facilities, specific GHGs, activities, geographies, etc.) of Scope 1, Scope 2 or Scope 3 emissions that are within your selected reporting boundary which are not included in your disclosure?
No

C6.5

(C6.5) Account for your organization’s gross global Scope 3 emissions, disclosing and explaining any exclusions.

Purchased goods and services

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
2,108,469.07

Emissions calculation methodology
Hybrid method
Spend-based method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0
Please explain

Emissions were calculated using a custom hybrid life cycle assessment model and database for 100% of procured direct (fashion related materials and products) and indirect (non-fashion) goods and services over the reporting period.

All values represent cradle-to-vendor-gate emissions across all GHG emissions identified in the GHG Protocol Value Chain Standard, using GWP values from the IPCC Fifth Assessment Report.

Purchased goods and services refers to all procured direct materials, material processing and manufacturing of fashion products as well as spend on all non-capital products and services not directly linked to sold products (indirect spend).

Emissions estimates for this Scope 3 category were calculated using procurement and inventory data in a hybrid LCA model, using a spend based analysis for indirect spend and a bottom up, mass based unit process LCA approach, modeled at the item level, for the entire fashion inventory.

Capital goods

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
7,202.298

Emissions calculation methodology
Spend-based method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
Emissions were calculated using an economic input-output life cycle assessment approach for 100% of capital expenditures data over the reporting period. All values represent cradle-to-gate emissions across all GHG emissions identified in the GHG Protocol Value Chain Standard and GWP values from the IPCC Fifth Assessment Report.

Fuel-and-energy-related activities (not included in Scope 1 or 2)

<table>
<thead>
<tr>
<th>Evaluation status</th>
<th>Relevant, calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions in reporting year (metric tons CO2e)</td>
<td>8,356.957</td>
</tr>
<tr>
<td>Emissions calculation methodology</td>
<td>Fuel-based method</td>
</tr>
<tr>
<td>Percentage of emissions calculated using data obtained from suppliers or value chain partners</td>
<td>0</td>
</tr>
</tbody>
</table>

Please explain

Emissions were calculated using data from the company’s energy consumption across owned and operated facilities. Location- and Market-based emissions factors at the regional level were derived using regional fuel mix and T&D losses reported by multiple sources, including the latest datasets from US EPA’s eGRID, the International Energy (IEA) Agency, the Canadian and Australian governments and the Association of Issuing Bodies.

Values were calculated using GWP values from the IPCC Fifth Assessment Report and represent upstream emissions from the production and transportation of fuels consumed by the company in the reporting year as well as T&D losses associated with electricity use.

Upstream transportation and distribution

<table>
<thead>
<tr>
<th>Evaluation status</th>
<th>Relevant, calculated</th>
</tr>
</thead>
</table>
Emissions in reporting year (metric tons CO2e)
89,568.878

Emissions calculation methodology
Hybrid method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
90

Please explain
Primary cargo mass, transport mode, and distance were provided by the company's logistics vendors for both inbound and outbound transportation. The client provided inbound data. Inbound and outbound emissions were then quantified by multiplying the provided t-km by emission factors (kg CO2e per t-km transport) provided by the logistics vendors.

Area and location data for 3PL warehouses were used to estimate annual energy consumption based on primary data (provided by LSCO team to fill in) of similar facilities in each region. Location data were also used to assign emission factors associated with the local electricity grid for each location to estimate emissions accordingly.

Waste generated in operations

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
15,083.47

Emissions calculation methodology
Spend-based method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0
Please explain

Emissions were calculated using an economic input-output life cycle assessment approach for 100% of waste expenditures data over the reporting period. All values represent cradle-to-gate emissions across all GHG emissions identified in the GHG Protocol Value Chain Standard and GWP values from the IPCC Fifth Assessment Report.

Business travel

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
9,523.15

Emissions calculation methodology
Supplier-specific method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
100

Please explain
Values represent all emissions associated with purchased air and rail travel, public transit and rental cars, as well as estimated emissions from business travel accommodations.

All emission values for air, rental car, and rail travel were provided by travel vendors.

Emissions from public transit and travel accommodations were estimated using an economic input-out life cycle assessment approach.

All values were calculated using GWP values from the IPCC Fifth Assessment Report.

Employee commuting

Evaluation status
Relevant, calculated

**Emissions in reporting year (metric tons CO2e)**
19,254.44

**Emissions calculation methodology**
Average data method

**Percentage of emissions calculated using data obtained from suppliers or value chain partners**
0

**Please explain**
For standard commuting, emissions were estimated using the total number of employees, an assumed breakdown of commuting patterns (mode and distance) based on American Community Survey Reports published by the U.S. Census Bureau and average emissions factors for U.S. automobiles and mass transit from WRI's GHG Protocol Calculation Tools.

Teleworking was quantified using average household energy data from IEA, average household size from US Census data and assumptions about average work area in the home and hours of work to estimate electricity consumption. This figure was then multiplied by the IEA global average emission factor to quantify total emissions from telecommuting.

**Upstream leased assets**

**Evaluation status**
Not relevant, explanation provided

**Please explain**
Upstream leased assets are not applicable in the Company's business.

**Downstream transportation and distribution**

**Evaluation status**
Relevant, calculated
Emissions in reporting year (metric tons CO2e)
303,453.64

Emissions calculation methodology
Average data method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
Building electricity consumption per square foot of floor space for downstream retail and distribution centers was modeled using average values from owned and operating DCs and retailers. The total square footage required to house stacked products in the retail and DC buildings was estimated based on the dimensions of a representative product (pair of jeans). This value was then used to determine the overall electricity consumption for the items sold.

Downstream transportation impacts were determined using estimated garment weights for items sold and an assumed distance traveled.

Primary data is not available for this category. As such, best available assumptions were used to estimate the overall magnitude of emissions from downstream transportation and distribution.

Processing of sold products

Evaluation status
Not relevant, explanation provided

Please explain
Not relevant because there is no downstream processing of sold fashion.

Use of sold products

Evaluation status
Relevant, calculated
**Emissions in reporting year (metric tons CO2e)**
1,201,054

**Emissions calculation methodology**
Other, please specify
Methodology for indirect use phase emissions

**Percentage of emissions calculated using data obtained from suppliers or value chain partners**
0

**Please explain**
Emissions resulting from the use of sold products were calculated for washing and drying activities associated with the use of apparel products over the average lifetime of the product. Product lifetimes were determined in accordance with peer-reviewed literature values based on average total number of wears for a product category, e.g., t-shirts, pants, etc. and the number of wears per wash. Wears per wash were derived from survey data specific to country or region in which the product was sold. Sales region also dictated the wash water temperature and drying method.

Use of sold products in apparel refer to the energy use associated with washing, drying, and other relevant activities performed on apparel products between uses.

**End of life treatment of sold products**

**Evaluation status**
Relevant, calculated

**Emissions in reporting year (metric tons CO2e)**
77,457.92

**Emissions calculation methodology**
Waste-type-specific method

**Percentage of emissions calculated using data obtained from suppliers or value chain partners**
Please explain

End of life treatment emissions were calculated according to the total mass of sold product in a particular region. A mix of waste management facility types, e.g., landfill, incineration, etc. were used for each country or region in which the products were sold. Primary data were not available for reuse/recycling, so an assumed 11% of sold products were either recycled or put another use.

Primary data is not available for this category. As such, best available assumptions were used to estimate the fate of sold products and associated emissions.

**Downstream leased assets**

Evaluation status
Not relevant, explanation provided

Please explain
Not relevant because the company does not act as a lessor.

**Franchises**

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
29,837.21

Emissions calculation methodology
Average data method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
The reported figure represents franchise Scope 1 & 2 emissions. Primary energy data is not available for franchise facilities, so energy was estimated by using average energy per area from owned and operated facilities and then multiplied by the area of each franchise facility, as reported to the company. Emissions were then calculated by multiplying the resulting facility energy estimate by country-level emission factors from IEA.

**Investments**

**Evaluation status**
Not relevant, explanation provided

**Please explain**
The Company does not have significant investments as part of its core business.

**Other (upstream)**

**Evaluation status**
Not evaluated

**Please explain**
n/a

**Other (downstream)**

**Evaluation status**
Not evaluated

**Please explain**
n/a

**C6.5a**

(C6.5a) Disclose or restate your Scope 3 emissions data for previous years.
**Past year 1**

**Start date**  
November 29, 2020

**End date**  
November 29, 2021

**Scope 3: Purchased goods and services (metric tons CO2e)**  
2,129,301

**Scope 3: Capital goods (metric tons CO2e)**  
9,307

**Scope 3: Fuel and energy-related activities (not included in Scopes 1 or 2) (metric tons CO2e)**  
8,383

**Scope 3: Upstream transportation and distribution (metric tons CO2e)**  
94,863

**Scope 3: Waste generated in operations (metric tons CO2e)**  
13,836

**Scope 3: Business travel (metric tons CO2e)**  
1,907

**Scope 3: Employee commuting (metric tons CO2e)**  
6,173

**Scope 3: Upstream leased assets (metric tons CO2e)**

**Scope 3: Downstream transportation and distribution (metric tons CO2e)**
283,404

Scope 3: Processing of sold products (metric tons CO2e)

Scope 3: Use of sold products (metric tons CO2e)
  1,229,576

Scope 3: End of life treatment of sold products (metric tons CO2e)
  89,673

Scope 3: Downstream leased assets (metric tons CO2e)

Scope 3: Franchises (metric tons CO2e)
  36,732

Scope 3: Investments (metric tons CO2e)

Scope 3: Other (upstream) (metric tons CO2e)

Scope 3: Other (downstream) (metric tons CO2e)

Comment

C6.7

(C6.7) Are carbon dioxide emissions from biogenic carbon relevant to your organization?
  No
C6.10

(C6.10) Describe your gross global combined Scope 1 and 2 emissions for the reporting year in metric tons CO2e per unit currency total revenue and provide any additional intensity metrics that are appropriate to your business operations.

<table>
<thead>
<tr>
<th>Intensity figure</th>
<th>0.00000238</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric numerator</td>
<td>14,673.59</td>
</tr>
<tr>
<td>Metric denominator</td>
<td>Unit total revenue</td>
</tr>
<tr>
<td>Metric denominator: Unit total</td>
<td>6,169,000,000</td>
</tr>
<tr>
<td>Scope 2 figure used</td>
<td>Market-based</td>
</tr>
<tr>
<td>% change from previous year</td>
<td>23.67</td>
</tr>
<tr>
<td>Direction of change</td>
<td>Decreased</td>
</tr>
<tr>
<td>Reason(s) for change</td>
<td>Other emissions reduction activities</td>
</tr>
</tbody>
</table>

Please explain
Numerator changes include reduced scope 1 and scope 2 emissions because of different operating or market-based instruments. Denominator changes include increased revenue in 2022 because of business activity.

C7. Emissions breakdowns

C7.1

(C7.1) Does your organization break down its Scope 1 emissions by greenhouse gas type?
Yes

C7.1a

(C7.1a) Break down your total gross global Scope 1 emissions by greenhouse gas type and provide the source of each used greenhouse warming potential (GWP).

<table>
<thead>
<tr>
<th>Greenhouse gas</th>
<th>Scope 1 emissions (metric tons of CO2e)</th>
<th>GWP Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>8,426</td>
<td>IPCC Fifth Assessment Report (AR5 – 100 year)</td>
</tr>
<tr>
<td>HFCs</td>
<td>1,450</td>
<td>IPCC Fifth Assessment Report (AR5 – 100 year)</td>
</tr>
<tr>
<td>N2O</td>
<td>6</td>
<td>IPCC Fifth Assessment Report (AR5 – 100 year)</td>
</tr>
<tr>
<td>CH4</td>
<td>2</td>
<td>IPCC Fifth Assessment Report (AR5 – 100 year)</td>
</tr>
</tbody>
</table>

C7.2

(C7.2) Break down your total gross global Scope 1 emissions by country/area/region.

<table>
<thead>
<tr>
<th>Country/area/region</th>
<th>Scope 1 emissions (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia, Australasia, Middle East and Africa</td>
<td>1,661</td>
</tr>
<tr>
<td>Americas</td>
<td>3,816</td>
</tr>
</tbody>
</table>
C7.3

(C7.3) Indicate which gross global Scope 1 emissions breakdowns you are able to provide.
By business division

C7.3a

(C7.3a) Break down your total gross global Scope 1 emissions by business division.

<table>
<thead>
<tr>
<th>Business division</th>
<th>Scope 1 emissions (metric ton CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution Centers</td>
<td>2,381</td>
</tr>
<tr>
<td>Offices</td>
<td>722</td>
</tr>
<tr>
<td>Plants</td>
<td>3,786</td>
</tr>
<tr>
<td>Retail Stores</td>
<td>1,942</td>
</tr>
<tr>
<td>Unknown</td>
<td>924</td>
</tr>
<tr>
<td>Warehouse</td>
<td>122</td>
</tr>
<tr>
<td>Beyond Yoga</td>
<td>8</td>
</tr>
</tbody>
</table>

C7.5

(C7.5) Break down your total gross global Scope 2 emissions by country/area/region.

<table>
<thead>
<tr>
<th>Country/area/region</th>
<th>Scope 2, location-based (metric tons CO2e)</th>
<th>Scope 2, market-based (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>619</td>
<td>206</td>
</tr>
<tr>
<td>Austria</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Country</td>
<td>Carbon Dioxide Emissions</td>
<td>Methane Emissions</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Belgium</td>
<td>178</td>
<td>57</td>
</tr>
<tr>
<td>Bolivia (Plurinational State of)</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Brazil</td>
<td>83</td>
<td>83</td>
</tr>
<tr>
<td>Canada</td>
<td>249</td>
<td>0</td>
</tr>
<tr>
<td>Chile</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>China</td>
<td>2,975</td>
<td>0</td>
</tr>
<tr>
<td>Czechia</td>
<td>139</td>
<td>84</td>
</tr>
<tr>
<td>Denmark</td>
<td>15</td>
<td>38</td>
</tr>
<tr>
<td>Finland</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>France</td>
<td>43</td>
<td>6</td>
</tr>
<tr>
<td>Germany</td>
<td>463</td>
<td>0</td>
</tr>
<tr>
<td>Greece</td>
<td>39</td>
<td>23</td>
</tr>
<tr>
<td>Hungary</td>
<td>56</td>
<td>47</td>
</tr>
<tr>
<td>India</td>
<td>918</td>
<td>918</td>
</tr>
<tr>
<td>Indonesia</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>Ireland</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Italy</td>
<td>367</td>
<td>56</td>
</tr>
<tr>
<td>Japan</td>
<td>1,086</td>
<td>150</td>
</tr>
<tr>
<td>Republic of Korea</td>
<td>345</td>
<td>345</td>
</tr>
<tr>
<td>Malaysia</td>
<td>749</td>
<td>164</td>
</tr>
<tr>
<td>Mexico</td>
<td>894</td>
<td>0</td>
</tr>
<tr>
<td>Netherlands</td>
<td>160</td>
<td>35</td>
</tr>
<tr>
<td>Country</td>
<td>C7.6</td>
<td>C7.6</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>New Zealand</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Norway</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>Pakistan</td>
<td>353</td>
<td>353</td>
</tr>
<tr>
<td>Peru</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>Philippines</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Poland</td>
<td>2,658</td>
<td>775</td>
</tr>
<tr>
<td>Portugal</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Romania</td>
<td>79</td>
<td>81</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Singapore</td>
<td>301</td>
<td>91</td>
</tr>
<tr>
<td>South Africa</td>
<td>2,492</td>
<td>152</td>
</tr>
<tr>
<td>Spain</td>
<td>176</td>
<td>140</td>
</tr>
<tr>
<td>Sweden</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Taiwan, China</td>
<td>432</td>
<td>432</td>
</tr>
<tr>
<td>Turkey</td>
<td>246</td>
<td>246</td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>United Kingdom of Great Britain and Northern Ireland</td>
<td>913</td>
<td>0</td>
</tr>
<tr>
<td>United States of America</td>
<td>22,826</td>
<td>63</td>
</tr>
</tbody>
</table>

**C7.6**

*(C7.6) Indicate which gross global Scope 2 emissions breakdowns you are able to provide.*

*By business division*
C7.6a

(C7.6a) Break down your total gross global Scope 2 emissions by business division.

<table>
<thead>
<tr>
<th>Business division</th>
<th>Scope 2, location-based (metric tons CO2e)</th>
<th>Scope 2, market-based (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution Centers</td>
<td>15,520</td>
<td>0</td>
</tr>
<tr>
<td>Offices</td>
<td>2,599</td>
<td>704</td>
</tr>
<tr>
<td>Retail Stores</td>
<td>17,912</td>
<td>3,902</td>
</tr>
<tr>
<td>Plants</td>
<td>3,848</td>
<td>128</td>
</tr>
<tr>
<td>Unknown</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Warehouse</td>
<td>217</td>
<td>52</td>
</tr>
<tr>
<td>Beyond Yoga</td>
<td>24</td>
<td>1</td>
</tr>
</tbody>
</table>

C7.7

(C7.7) Is your organization able to break down your emissions data for any of the subsidiaries included in your CDP response?

Not relevant as we do not have any subsidiaries

C7.9

(C7.9) How do your gross global emissions (Scope 1 and 2 combined) for the reporting year compare to those of the previous reporting year?

Decreased

C7.9a

(C7.9a) Identify the reasons for any change in your gross global emissions (Scope 1 and 2 combined), and for each of them specify how your emissions compare to the previous year.
<table>
<thead>
<tr>
<th>Change in emissions (metric tons CO2e)</th>
<th>Direction of change in emissions</th>
<th>Emissions value (percentage)</th>
<th>Please explain calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in renewable energy consumption</td>
<td>238</td>
<td>Decreased 1.4</td>
<td>Numerator is the tCO2e from RECs in 2022 minus the tCO2e from RECs in 2021, which is 35363-35225, or 238 tCO2e. Denominator is the total sum of scope 1 and 2 market based emissions in 2021, which is 16956. The change is 238 / 16956 and is a 1.4% change in emissions RECs and EACs</td>
</tr>
<tr>
<td>Other emissions reduction activities</td>
<td>50</td>
<td>Decreased 0.29</td>
<td>In 2022 a LED lighting retrofit project was completed in our UK distribution center. This numerator is 50 tCO2e anticipated reduction from this activity. Denominator is the total sum of scope 1 and 2 market based emissions in 2021, which is 16956. The change is 50 / 16956 and is a 0.29%</td>
</tr>
<tr>
<td>Divestment</td>
<td>0</td>
<td>No change</td>
<td></td>
</tr>
<tr>
<td>Acquisitions</td>
<td>0</td>
<td>No change</td>
<td></td>
</tr>
<tr>
<td>Mergers</td>
<td>0</td>
<td>No change</td>
<td></td>
</tr>
<tr>
<td>Change in output</td>
<td>0</td>
<td>No change</td>
<td></td>
</tr>
<tr>
<td>Change in methodology</td>
<td>0</td>
<td>No change</td>
<td></td>
</tr>
<tr>
<td>Change in boundary</td>
<td>0</td>
<td>No change</td>
<td></td>
</tr>
<tr>
<td>Change in physical operating conditions</td>
<td>0</td>
<td>No change</td>
<td></td>
</tr>
</tbody>
</table>
C7.9b

(C7.9b) Are your emissions performance calculations in C7.9 and C7.9a based on a location-based Scope 2 emissions figure or a market-based Scope 2 emissions figure? 

Market-based

C8. Energy

C8.1

(C8.1) What percentage of your total operational spend in the reporting year was on energy? 

More than 5% but less than or equal to 10%

C8.2

(C8.2) Select which energy-related activities your organization has undertaken.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Indicate whether your organization undertook this energy-related activity in the reporting year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of fuel (excluding feedstocks)</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumption of purchased or acquired electricity</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumption of purchased or acquired heat</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumption of purchased or acquired steam</td>
<td>No</td>
</tr>
<tr>
<td>Consumption of purchased or acquired cooling</td>
<td>No</td>
</tr>
<tr>
<td>Generation of electricity, heat, steam, or cooling</td>
<td>Yes</td>
</tr>
</tbody>
</table>
### C8.2a

**(C8.2a) Report your organization’s energy consumption totals (excluding feedstocks) in MWh.**

<table>
<thead>
<tr>
<th></th>
<th>Heating value</th>
<th>MWh from renewable sources</th>
<th>MWh from non-renewable sources</th>
<th>Total (renewable and non-renewable) MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of fuel (excluding feedstock)</td>
<td>HHV (higher heating value)</td>
<td>0</td>
<td>42,499</td>
<td>42,499</td>
</tr>
<tr>
<td>Consumption of purchased or acquired electricity</td>
<td></td>
<td>92,052</td>
<td>2,865</td>
<td>94,917</td>
</tr>
<tr>
<td>Consumption of purchased or acquired heat</td>
<td></td>
<td>0</td>
<td>1,197</td>
<td>1,197</td>
</tr>
<tr>
<td>Consumption of self-generated non-fuel renewable energy</td>
<td></td>
<td>1,999</td>
<td></td>
<td>1,999</td>
</tr>
<tr>
<td>Total energy consumption</td>
<td></td>
<td>94,051</td>
<td>46,561</td>
<td>140,601</td>
</tr>
</tbody>
</table>

### C8.2b

**(C8.2b) Select the applications of your organization’s consumption of fuel.**

<table>
<thead>
<tr>
<th>Application</th>
<th>Indicate whether your organization undertakes this fuel application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of fuel for the generation of electricity</td>
<td>No</td>
</tr>
<tr>
<td>Consumption of fuel for the generation of heat</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumption of fuel for the generation of steam</td>
<td>No</td>
</tr>
<tr>
<td>Consumption of fuel for the generation of cooling</td>
<td>No</td>
</tr>
<tr>
<td>Consumption of fuel for co-generation or tri-generation</td>
<td>No</td>
</tr>
</tbody>
</table>


C8.2c

(C8.2c) State how much fuel in MWh your organization has consumed (excluding feedstocks) by fuel type.

**Sustainable biomass**

- Heating value
  - Unable to confirm heating value

- Total fuel MWh consumed by the organization
  - 0

**Comment**

**Other biomass**

- Heating value
  - Unable to confirm heating value

- Total fuel MWh consumed by the organization
  - 0

**Comment**

**Other renewable fuels (e.g. renewable hydrogen)**

- Heating value
  - Unable to confirm heating value

- Total fuel MWh consumed by the organization
  - 0
Comment

Coal

Heating value
Unable to confirm heating value

Total fuel MWh consumed by the organization
0

Comment

Oil

Heating value
HHV

Total fuel MWh consumed by the organization
4,604

Comment

Gas

Heating value
HHV

Total fuel MWh consumed by the organization
34,764
Other non-renewable fuels (e.g. non-renewable hydrogen)

Heating value
Unable to confirm heating value

Total fuel MWh consumed by the organization
0

Comment

Total fuel

Heating value
HHV

Total fuel MWh consumed by the organization
39,369

Comment

C8.2d

(C8.2d) Provide details on the electricity, heat, steam, and cooling your organization has generated and consumed in the reporting year.

<table>
<thead>
<tr>
<th>Total Gross generation (MWh)</th>
<th>Generation that is consumed by the organization (MWh)</th>
<th>Gross generation from renewable sources (MWh)</th>
<th>Generation from renewable sources that is consumed by the organization (MWh)</th>
</tr>
</thead>
</table>
C8.2e

(C8.2e) Provide details on the electricity, heat, steam, and/or cooling amounts that were accounted for at a zero or near-zero emission factor in the market-based Scope 2 figure reported in C6.3.

<table>
<thead>
<tr>
<th>Electricity</th>
<th>1,999</th>
<th>1,999</th>
<th>1,999</th>
<th>1,999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Steam</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cooling</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Country/area of low-carbon energy consumption
- Australia

Sourcing method
- Unbundled procurement of energy attribute certificates (EACs)

Energy carrier
- Electricity

Low-carbon technology type
- Renewable energy mix, please specify
  - Solar and wind

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
- 636

Tracking instrument used
- Australian LGC
Country/area of origin (generation) of the low-carbon energy or energy attribute

Australia

Are you able to report the commissioning or re-powering year of the energy generation facility?

No

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Comment

Country/area of low-carbon energy consumption

Austria

Sourcing method

Unbundled procurement of energy attribute certificates (EACs)

Energy carrier

Electricity

Low-carbon technology type

Wind

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

130

Tracking instrument used

GO

Country/area of origin (generation) of the low-carbon energy or energy attribute
Germany

Are you able to report the commissioning or re-powering year of the energy generation facility?
Yes

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2015

Comment

Country/area of low-carbon energy consumption
Belgium

Sourcing method
Unbundled procurement of energy attribute certificates (EACs)

Energy carrier
Electricity

Low-carbon technology type
Wind

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
657

Tracking instrument used
GO

Country/area of origin (generation) of the low-carbon energy or energy attribute
Germany
Are you able to report the commissioning or re-powering year of the energy generation facility?
Yes

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2016

Comment

Country/area of low-carbon energy consumption
Canada

Sourcing method
Unbundled procurement of energy attribute certificates (EACs)

Energy carrier
Electricity

Low-carbon technology type
Small hydropower (<25 MW)

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
2,784

Tracking instrument used
Other, please specify
Green-e tracking instrument

Country/area of origin (generation) of the low-carbon energy or energy attribute
Canada
Are you able to report the commissioning or re-powering year of the energy generation facility?
   Yes

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
   2017

Comment

Country/area of low-carbon energy consumption
   China

Sourcing method
   Unbundled procurement of energy attribute certificates (EACs)

Energy carrier
   Electricity

Low-carbon technology type
   Hydropower (capacity unknown)

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
   4,819

Tracking instrument used
   I-REC

Country/area of origin (generation) of the low-carbon energy or energy attribute
   China

Are you able to report the commissioning or re-powering year of the energy generation facility?
Yes

**Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)**

2010

**Comment**

---

**Country/area of low-carbon energy consumption**

Czechia

**Sourcing method**

Unbundled procurement of energy attribute certificates (EACs)

**Energy carrier**

Electricity

**Low-carbon technology type**

Wind

**Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)**

187

**Tracking instrument used**

GO

**Country/area of origin (generation) of the low-carbon energy or energy attribute**

Germany

**Are you able to report the commissioning or re-powering year of the energy generation facility?**

Yes
Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2019

Comment

Country/area of low-carbon energy consumption
Denmark

Sourcing method
Unbundled procurement of energy attribute certificates (EACs)

Energy carrier
Electricity

Low-carbon technology type
Wind

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
91

Tracking instrument used
GO

Country/area of origin (generation) of the low-carbon energy or energy attribute
Germany

Are you able to report the commissioning or re-powering year of the energy generation facility?
Yes

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
Comment

Country/area of low-carbon energy consumption
France

Sourcing method
Unbundled procurement of energy attribute certificates (EACs)

Energy carrier
Electricity

Low-carbon technology type
Renewable energy mix, please specify
Hydropower and wind

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
656

Tracking instrument used
GO

Country/area of origin (generation) of the low-carbon energy or energy attribute
France

Are you able to report the commissioning or re-powering year of the energy generation facility?
Yes

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
Country/area of low-carbon energy consumption
   Germany

Sourcing method
   Retail supply contract with an electricity supplier (retail green electricity)

Energy carrier
   Electricity

Low-carbon technology type
   Renewable energy mix, please specify
   Unknown – green tariff agreement with utility provider

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
   1,553

Tracking instrument used
   Contract

Country/area of origin (generation) of the low-carbon energy or energy attribute
   Germany

Are you able to report the commissioning or re-powering year of the energy generation facility?
   No

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
**Comment**
LS&Co has an agreement with our utility provider to receive 100% renewable and non-carbon emitting electricity, but we do not have insight into the low-carbon technology type.

<table>
<thead>
<tr>
<th><strong>Country/area of low-carbon energy consumption</strong></th>
<th>Greece</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Sourcing method</strong></td>
<td>Unbundled procurement of energy attribute certificates (EACs)</td>
</tr>
<tr>
<td><strong>Energy carrier</strong></td>
<td>Electricity</td>
</tr>
<tr>
<td><strong>Low-carbon technology type</strong></td>
<td>Wind</td>
</tr>
<tr>
<td><strong>Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)</strong></td>
<td>49</td>
</tr>
<tr>
<td><strong>Tracking instrument used</strong></td>
<td>GO</td>
</tr>
<tr>
<td><strong>Country/area of origin (generation) of the low-carbon energy or energy attribute</strong></td>
<td>Germany</td>
</tr>
<tr>
<td><strong>Are you able to report the commissioning or re-powering year of the energy generation facility?</strong></td>
<td>Yes</td>
</tr>
<tr>
<td><strong>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</strong></td>
<td></td>
</tr>
</tbody>
</table>
2020

Comment

Country/area of low-carbon energy consumption
Hungary

Sourcing method
Unbundled procurement of energy attribute certificates (EACs)

Energy carrier
Electricity

Low-carbon technology type
Wind

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
102

Tracking instrument used
GO

Country/area of origin (generation) of the low-carbon energy or energy attribute
Germany

Are you able to report the commissioning or re-powering year of the energy generation facility?
Yes

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2021
| **Country/area of low-carbon energy consumption** | Ireland |
| **Sourcing method** | Unbundled procurement of energy attribute certificates (EACs) |
| **Energy carrier** | Electricity |
| **Low-carbon technology type** | Wind |
| **Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)** | 114 |
| **Tracking instrument used** | GO |
| **Country/area of origin (generation) of the low-carbon energy or energy attribute** | Germany |
| **Are you able to report the commissioning or re-powering year of the energy generation facility?** | Yes |
| **Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)** | 2021 |
Country/area of low-carbon energy consumption
  Italy

Sourcing method
  Unbundled procurement of energy attribute certificates (EACs)

Energy carrier
  Electricity

Low-carbon technology type
  Wind

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
  199

Tracking instrument used
  GO

Country/area of origin (generation) of the low-carbon energy or energy attribute
  Germany

Are you able to report the commissioning or re-powering year of the energy generation facility?
  Yes

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
  2015

Comment
Country/area of low-carbon energy consumption  
Italy

**Sourcing method**  
Unbundled procurement of energy attribute certificates (EACs)

**Energy carrier**  
Electricity

**Low-carbon technology type**  
Hydropower (capacity unknown)

**Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)**  
995

**Tracking instrument used**  
GO

**Country/area of origin (generation) of the low-carbon energy or energy attribute**  
Norway

Are you able to report the commissioning or re-powering year of the energy generation facility?  
Yes

**Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)**  
1963

**Comment**
Country/area of low-carbon energy consumption
Japan

Sourcing method
Unbundled procurement of energy attribute certificates (EACs)

Energy carrier
Electricity

Low-carbon technology type
Solar

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
1,958

Tracking instrument used
I-REC

Country/area of origin (generation) of the low-carbon energy or energy attribute
Japan

Are you able to report the commissioning or re-powering year of the energy generation facility?
No

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Comment
Malaysia

**Sourcing method**
Unbundled procurement of energy attribute certificates (EACs)

**Energy carrier**
Electricity

**Low-carbon technology type**
Hydropower (capacity unknown)

**Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)**
896

**Tracking instrument used**
I-REC

**Country/area of origin (generation) of the low-carbon energy or energy attribute**
Malaysia

**Are you able to report the commissioning or re-powering year of the energy generation facility?**
Yes

**Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)**
2014

**Comment**

**Country/area of low-carbon energy consumption**
Mexico
**Sourcing method**  
Unbundled procurement of energy attribute certificates (EACs)

**Energy carrier**  
Electricity

**Low-carbon technology type**  
Wind

**Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)**  
2,244

**Tracking instrument used**  
I-REC

**Country/area of origin (generation) of the low-carbon energy or energy attribute**  
Mexico

**Are you able to report the commissioning or re-powering year of the energy generation facility?**  
Yes

**Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)**  
2016

**Comment**

**Country/area of low-carbon energy consumption**  
Netherlands

**Sourcing method**
Unbundled procurement of energy attribute certificates (EACs)

**Energy carrier**
- Electricity

**Low-carbon technology type**
- Wind

**Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)**
- 195

**Tracking instrument used**
- GO

**Country/area of origin (generation) of the low-carbon energy or energy attribute**
- Czechia

**Are you able to report the commissioning or re-powering year of the energy generation facility?**
- Yes

**Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)**
- 2007

**Comment**

---

**Country/area of low-carbon energy consumption**
- Netherlands

**Sourcing method**
- Unbundled procurement of energy attribute certificates (EACs)
**Energy carrier**
   Electricity

**Low-carbon technology type**
   Wind

**Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)**
   126

**Tracking instrument used**
   GO

**Country/area of origin (generation) of the low-carbon energy or energy attribute**
   Belgium

**Are you able to report the commissioning or re-powering year of the energy generation facility?**
   Yes

**Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)**
   2014

**Comment**

---

**Country/area of low-carbon energy consumption**
   Poland

**Sourcing method**
   Retail supply contract with an electricity supplier (retail green electricity)

**Energy carrier**
Electricity

**Low-carbon technology type**
Renewable energy mix, please specify
Unknown – green tariff agreement with utility provider

**Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)**
3,584

**Tracking instrument used**
Contract

**Country/area of origin (generation) of the low-carbon energy or energy attribute**
Poland

**Are you able to report the commissioning or re-powering year of the energy generation facility?**
No

**Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)**

**Comment**
LS&Co has an agreement with our utility provider to receive 100% renewable and non-carbon emitting electricity, but we do not have insight into the low-carbon technology type.

**Country/area of low-carbon energy consumption**
Singapore

**Sourcing method**
Unbundled procurement of energy attribute certificates (EACs)
Energy carrier
   Electricity

Low-carbon technology type
   Hydropower (capacity unknown)

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
   545

Tracking instrument used
   I-REC

Country/area of origin (generation) of the low-carbon energy or energy attribute
   Malaysia

Are you able to report the commissioning or re-powering year of the energy generation facility?
   Yes

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
   2014

Comment

Country/area of low-carbon energy consumption
   South Africa

Sourcing method
   Unbundled procurement of energy attribute certificates (EACs)

Energy carrier
Electricity

**Low-carbon technology type**
Wind

**Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)**
2,521

**Tracking instrument used**
I-REC

**Country/area of origin (generation) of the low-carbon energy or energy attribute**
South Africa

Are you able to report the commissioning or re-powering year of the energy generation facility?
Yes

**Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)**
2014

Comment

Country/area of low-carbon energy consumption
Spain

**Sourcing method**
Unbundled procurement of energy attribute certificates (EACs)

**Energy carrier**
Electricity
**Low-carbon technology type**

Renewable energy mix, please specify
- Hydropower and wind

**Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)**

697

**Tracking instrument used**

GO

**Country/area of origin (generation) of the low-carbon energy or energy attribute**

Germany

**Are you able to report the commissioning or re-powering year of the energy generation facility?**

Yes

**Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)**

1963

**Comment**

---

**Country/area of low-carbon energy consumption**

United Kingdom of Great Britain and Northern Ireland

**Sourcing method**

Retail supply contract with an electricity supplier (retail green electricity)

**Energy carrier**

Electricity
Low-carbon technology type
Renewable energy mix, please specify
Unknown – green tariff agreement with utility provider

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
4,745

Tracking instrument used
Contract

Country/area of origin (generation) of the low-carbon energy or energy attribute
United Kingdom of Great Britain and Northern Ireland

Are you able to report the commissioning or re-powering year of the energy generation facility?
No

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Comment
LS&Co has an agreement with our utility provider to receive 100% renewable and non-carbon emitting electricity, but we do not have insight into the low-carbon technology type.

Country/area of low-carbon energy consumption
United States of America

Sourcing method
Retail supply contract with an electricity supplier (retail green electricity)

Energy carrier
Electricity
<table>
<thead>
<tr>
<th>Low-carbon technology type</th>
<th>Renewable energy mix, please specify</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unknown – green tariff agreement with utility provider</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,035</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tracking instrument used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/area of origin (generation) of the low-carbon energy or energy attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States of America</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Are you able to report the commissioning or re-powering year of the energy generation facility?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS&amp;Co has an agreement with our utility provider to receive 100% renewable and non-carbon emitting electricity, but we do not have insight into the low-carbon technology type.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/area of low-carbon energy consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States of America</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sourcing method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unbundled procurement of energy attribute certificates (EACs)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy carrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
</tr>
</tbody>
</table>
Low-carbon technology type
Wind

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
60,171

Tracking instrument used
US-REC

Country/area of origin (generation) of the low-carbon energy or energy attribute
United States of America

Are you able to report the commissioning or re-powering year of the energy generation facility?
Yes

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2009

Comment

C8.2g

(C8.2g) Provide a breakdown by country/area of your non-fuel energy consumption in the reporting year.

Country/area
Australia

Consumption of purchased electricity (MWh)
936
| Consumption of self-generated electricity (MWh) | 0 |
| Consumption of purchased heat, steam, and cooling (MWh) | 0 |
| Consumption of self-generated heat, steam, and cooling (MWh) | 0 |
| **Total non-fuel energy consumption (MWh) [Auto-calculated]** | 936 |

---

**Country/area**

Austria

| Consumption of purchased electricity (MWh) | 155 |
| Consumption of self-generated electricity (MWh) | 0 |
| Consumption of purchased heat, steam, and cooling (MWh) | 0 |
| Consumption of self-generated heat, steam, and cooling (MWh) | 0 |
| **Total non-fuel energy consumption (MWh) [Auto-calculated]** | 155 |
### Country/area

**Bangladesh**

**Consumption of purchased electricity (MWh)**

7

**Consumption of self-generated electricity (MWh)**

0

**Consumption of purchased heat, steam, and cooling (MWh)**

0

**Consumption of self-generated heat, steam, and cooling (MWh)**

0

**Total non-fuel energy consumption (MWh) [Auto-calculated]**

7

---

### Country/area

**Belgium**

**Consumption of purchased electricity (MWh)**

1,042

**Consumption of self-generated electricity (MWh)**

0

**Consumption of purchased heat, steam, and cooling (MWh)**
Consumption of self-generated heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
1,042

Country/area
Bolivia (Plurinational State of)

Consumption of purchased electricity (MWh)
203

Consumption of self-generated electricity (MWh)
0

Consumption of purchased heat, steam, and cooling (MWh)
0

Consumption of self-generated heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
203

Country/area
<table>
<thead>
<tr>
<th>Country/area</th>
<th>Consumption of purchased electricity (MWh)</th>
<th>Consumption of self-generated electricity (MWh)</th>
<th>Consumption of purchased heat, steam, and cooling (MWh)</th>
<th>Consumption of self-generated heat, steam, and cooling (MWh)</th>
<th>Total non-fuel energy consumption (MWh) [Auto-calculated]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>888</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>888</td>
</tr>
<tr>
<td>Canada</td>
<td>2,784</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,784</td>
</tr>
<tr>
<td>Country/area</td>
<td>Consumption of purchased electricity (MWh)</td>
<td>Consumption of self-generated electricity (MWh)</td>
<td>Consumption of purchased heat, steam, and cooling (MWh)</td>
<td>Consumption of self-generated heat, steam, and cooling (MWh)</td>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------------</td>
<td>--------------------------------------------------</td>
<td>--------------------------------------------------------</td>
<td>----------------------------------------------------------</td>
<td>----------------------------------------------------------</td>
</tr>
<tr>
<td>Chile</td>
<td>83</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>83</td>
</tr>
<tr>
<td>China</td>
<td>Consumption of purchased electricity (MWh)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Consumption of self-generated electricity (MWh)  
0

Consumption of purchased heat, steam, and cooling (MWh)  
0

Consumption of self-generated heat, steam, and cooling (MWh)  
0

Total non-fuel energy consumption (MWh) [Auto-calculated]  
4,819

Country/area
Czechia

Consumption of purchased electricity (MWh)  
340

Consumption of self-generated electricity (MWh)  
0

Consumption of purchased heat, steam, and cooling (MWh)  
0

Consumption of self-generated heat, steam, and cooling (MWh)  
0
Total non-fuel energy consumption (MWh) [Auto-calculated]

340

Country/area
Denmark

Consumption of purchased electricity (MWh)
164

Consumption of self-generated electricity (MWh)
0

Consumption of purchased heat, steam, and cooling (MWh)
0

Consumption of self-generated heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]

164

Country/area
Finland

Consumption of purchased electricity (MWh)
33
<table>
<thead>
<tr>
<th>Consumption of self-generated electricity (MWh)</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of purchased heat, steam, and cooling (MWh)</td>
<td>0</td>
</tr>
<tr>
<td>Consumption of self-generated heat, steam, and cooling (MWh)</td>
<td>0</td>
</tr>
<tr>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/area</th>
<th>France</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of purchased electricity (MWh)</td>
<td>777</td>
</tr>
<tr>
<td>Consumption of self-generated electricity (MWh)</td>
<td>0</td>
</tr>
<tr>
<td>Consumption of purchased heat, steam, and cooling (MWh)</td>
<td>0</td>
</tr>
<tr>
<td>Consumption of self-generated heat, steam, and cooling (MWh)</td>
<td>0</td>
</tr>
<tr>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>777</td>
</tr>
<tr>
<td>Country/area</td>
<td>Consumption of purchased electricity (MWh)</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>Germany</td>
<td>1,553</td>
</tr>
<tr>
<td>Greece</td>
<td>102</td>
</tr>
<tr>
<td>Consumption of self-generated heat, steam, and cooling (MWh)</td>
<td>0</td>
</tr>
<tr>
<td>------------------------------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hungary</td>
</tr>
</tbody>
</table>

| Consumption of purchased electricity (MWh) | 273 |
| Consumption of self-generated electricity (MWh) | 0 |
| Consumption of purchased heat, steam, and cooling (MWh) | 0 |
| Consumption of self-generated heat, steam, and cooling (MWh) | 0 |
| Total non-fuel energy consumption (MWh) [Auto-calculated] | 273 |
India

Consumption of purchased electricity (MWh)  
1,325

Consumption of self-generated electricity (MWh)  
0

Consumption of purchased heat, steam, and cooling (MWh)  
0

Consumption of self-generated heat, steam, and cooling (MWh)  
0

Total non-fuel energy consumption (MWh) [Auto-calculated]  
1,325

Country/area  
Indonesia

Consumption of purchased electricity (MWh)  
37

Consumption of self-generated electricity (MWh)  
0

Consumption of purchased heat, steam, and cooling (MWh)  
0

Consumption of self-generated heat, steam, and cooling (MWh)
<table>
<thead>
<tr>
<th>Country/area</th>
<th>Consumption of purchased electricity (MWh)</th>
<th>Consumption of self-generated electricity (MWh)</th>
<th>Consumption of purchased heat, steam, and cooling (MWh)</th>
<th>Consumption of self-generated heat, steam, and cooling (MWh)</th>
<th>Total non-fuel energy consumption (MWh) [Auto-calculated]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ireland</td>
<td>114</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>114</td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption of self-generated electricity (MWh)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption of purchased heat, steam, and cooling (MWh)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption of self-generated heat, steam, and cooling (MWh)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Total non-fuel energy consumption (MWh) [Auto-calculated]</strong></td>
<td><strong>1,516</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

**Country/area**

Japan

<p>| Consumption of purchased electricity (MWh) | 2,272 |
| Consumption of self-generated electricity (MWh) | 0 |
| Consumption of purchased heat, steam, and cooling (MWh) | 0 |
| Consumption of self-generated heat, steam, and cooling (MWh) | 0 |</p>
<table>
<thead>
<tr>
<th>Country/area</th>
<th>Consumption of purchased electricity (MWh)</th>
<th>Consumption of self-generated electricity (MWh)</th>
<th>Consumption of purchased heat, steam, and cooling (MWh)</th>
<th>Consumption of self-generated heat, steam, and cooling (MWh)</th>
<th>Total non-fuel energy consumption (MWh) [Auto-calculated]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Republic of Korea</td>
<td>739</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>739</td>
</tr>
<tr>
<td>Malaysia</td>
<td>1,147</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,147</td>
</tr>
</tbody>
</table>
Consumption of self-generated electricity (MWh)
  0
Consumption of purchased heat, steam, and cooling (MWh)
  0
Consumption of self-generated heat, steam, and cooling (MWh)
  0
Total non-fuel energy consumption (MWh) [Auto-calculated]
  1,147

Country/area
  Mexico
Consumption of purchased electricity (MWh)
  2,244
Consumption of self-generated electricity (MWh)
  0
Consumption of purchased heat, steam, and cooling (MWh)
  0
Consumption of self-generated heat, steam, and cooling (MWh)
  0
Total non-fuel energy consumption (MWh) [Auto-calculated]
  2,244
<table>
<thead>
<tr>
<th>Country/area</th>
<th>Electricity Consumption (MWh)</th>
<th>Heat, Steam, and Cooling Consumption (MWh)</th>
<th>Total Non-Fuel Energy Consumption (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netherlands</td>
<td>560</td>
<td>0</td>
<td>560</td>
</tr>
<tr>
<td>New Zealand</td>
<td>94</td>
<td>0</td>
<td>94</td>
</tr>
<tr>
<td>Consumption of self-generated heat, steam, and cooling (MWh)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------------------------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>94</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/area</th>
<th>Norway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of purchased electricity (MWh)</td>
<td>52</td>
</tr>
<tr>
<td>Consumption of self-generated electricity (MWh)</td>
<td>0</td>
</tr>
<tr>
<td>Consumption of purchased heat, steam, and cooling (MWh)</td>
<td>0</td>
</tr>
<tr>
<td>Consumption of self-generated heat, steam, and cooling (MWh)</td>
<td>0</td>
</tr>
<tr>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>52</td>
</tr>
</tbody>
</table>
Pakistan

Consumption of purchased electricity (MWh)  
894

Consumption of self-generated electricity (MWh)  
0

Consumption of purchased heat, steam, and cooling (MWh)  
0

Consumption of self-generated heat, steam, and cooling (MWh)  
0

Total non-fuel energy consumption (MWh) [Auto-calculated]  
894

Country/area

Peru

Consumption of purchased electricity (MWh)  
285

Consumption of self-generated electricity (MWh)  
0

Consumption of purchased heat, steam, and cooling (MWh)  
0

Consumption of self-generated heat, steam, and cooling (MWh)  
0
<table>
<thead>
<tr>
<th>Country/area</th>
<th>Consumption of purchased electricity (MWh)</th>
<th>Consumption of self-generated electricity (MWh)</th>
<th>Consumption of purchased heat, steam, and cooling (MWh)</th>
<th>Consumption of self-generated heat, steam, and cooling (MWh)</th>
<th>Total non-fuel energy consumption (MWh) [Auto-calculated]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philippines</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Poland</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Levi Strauss & Co. CDP Climate Change Questionnaire 2023 Thursday, August 10, 2023
Consumption of self-generated electricity (MWh)
0

Consumption of purchased heat, steam, and cooling (MWh)
128

Consumption of self-generated heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
4,472

Country/area
Romania

Consumption of purchased electricity (MWh)
289

Consumption of self-generated electricity (MWh)
0

Consumption of purchased heat, steam, and cooling (MWh)
0

Consumption of self-generated heat, steam, and cooling (MWh)
0
Total non-fuel energy consumption (MWh) [Auto-calculated]

289

Country/area
Singapore

Consumption of purchased electricity (MWh)
781

Consumption of self-generated electricity (MWh)
0

Consumption of purchased heat, steam, and cooling (MWh)
0

Consumption of self-generated heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
781

Country/area
South Africa

Consumption of purchased electricity (MWh)
2,685
| Consumption of self-generated electricity (MWh) | 0 |
| Consumption of purchased heat, steam, and cooling (MWh) | 0 |
| Consumption of self-generated heat, steam, and cooling (MWh) | 0 |
| **Total non-fuel energy consumption (MWh) [Auto-calculated]** | 2,685 |

---

**Country/area**  
Spain

<p>| Consumption of purchased electricity (MWh) | 1,170 |
| Consumption of self-generated electricity (MWh) | 0 |
| Consumption of purchased heat, steam, and cooling (MWh) | 0 |
| Consumption of self-generated heat, steam, and cooling (MWh) | 0 |
| <strong>Total non-fuel energy consumption (MWh) [Auto-calculated]</strong> | 1,170 |</p>
<table>
<thead>
<tr>
<th>Country/area</th>
<th>Consumption of purchased electricity (MWh)</th>
<th>Consumption of self-generated electricity (MWh)</th>
<th>Consumption of purchased heat, steam, and cooling (MWh)</th>
<th>Consumption of self-generated heat, steam, and cooling (MWh)</th>
<th>Total non-fuel energy consumption (MWh) [Auto-calculated]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweden</td>
<td>75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>Switzerland</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Consumption of self-generated heat, steam, and cooling (MWh)  
0

Total non-fuel energy consumption (MWh) [Auto-calculated]  
15

Country/area  
Taiwan, China

Consumption of purchased electricity (MWh)  
789

Consumption of self-generated electricity (MWh)  
0

Consumption of purchased heat, steam, and cooling (MWh)  
0

Consumption of self-generated heat, steam, and cooling (MWh)  
0

Total non-fuel energy consumption (MWh) [Auto-calculated]  
789

Country/area
Turkey

Consumption of purchased electricity (MWh)  
510

Consumption of self-generated electricity (MWh)  
0

Consumption of purchased heat, steam, and cooling (MWh)  
0

Consumption of self-generated heat, steam, and cooling (MWh)  
0

Total non-fuel energy consumption (MWh) [Auto-calculated]  
510

Country/area  
United Arab Emirates

Consumption of purchased electricity (MWh)  
4

Consumption of self-generated electricity (MWh)  
0

Consumption of purchased heat, steam, and cooling (MWh)  
0

Consumption of self-generated heat, steam, and cooling (MWh)
Country/area
United Kingdom of Great Britain and Northern Ireland

Consumption of purchased electricity (MWh)
4,745

Consumption of self-generated electricity (MWh)
0

Consumption of purchased heat, steam, and cooling (MWh)
0

Consumption of self-generated heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
4,745

Country/area
United States of America

Consumption of purchased electricity (MWh)
61,392

**Consumption of self-generated electricity (MWh)**
1,998.6

**Consumption of purchased heat, steam, and cooling (MWh)**
0

**Consumption of self-generated heat, steam, and cooling (MWh)**
0

**Total non-fuel energy consumption (MWh) [Auto-calculated]**
63,390.6

### C9. Additional metrics

#### C9.1

(C9.1) Provide any additional climate-related metrics relevant to your business.

### C10. Verification

#### C10.1

(C10.1) Indicate the verification/assurance status that applies to your reported emissions.
### Scope 1
- Third-party verification or assurance process in place

### Scope 2 (location-based or market-based)
- Third-party verification or assurance process in place

### Scope 3
- Third-party verification or assurance process in place

## C10.1a

(C10.1a) Provide further details of the verification/assurance undertaken for your Scope 1 emissions, and attach the relevant statements.

<table>
<thead>
<tr>
<th>Verification or assurance cycle in place</th>
<th>Annual process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status in the current reporting year</td>
<td>Complete</td>
</tr>
<tr>
<td>Type of verification or assurance</td>
<td>Reasonable assurance</td>
</tr>
</tbody>
</table>

**Attach the statement**

[LSCo_FY2022_VerificationStatement_S1S2S3_V3-062723_s.pdf](LSCo_FY2022_VerificationStatement_S1S2S3_V3-062723_s.pdf)

**Page/ section reference**

1

**Relevant standard**

ISO14064-3

**Proportion of reported emissions verified (%)**
(C10.1b) Provide further details of the verification/assurance undertaken for your Scope 2 emissions and attach the relevant statements.

<table>
<thead>
<tr>
<th>Scope 2 approach</th>
<th>Scope 2 location-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verification or assurance cycle in place</td>
<td>Annual process</td>
</tr>
<tr>
<td>Status in the current reporting year</td>
<td>Complete</td>
</tr>
<tr>
<td>Type of verification or assurance</td>
<td>Reasonable assurance</td>
</tr>
<tr>
<td>Attach the statement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LSCo_FY2022_VerificationStatement_S1S2S3_V3-062723_s.pdf</td>
</tr>
<tr>
<td>Page/ section reference</td>
<td>1</td>
</tr>
<tr>
<td>Relevant standard</td>
<td>ISO14064-3</td>
</tr>
<tr>
<td>Proportion of reported emissions verified (%)</td>
<td></td>
</tr>
</tbody>
</table>
Scope 2 approach
   Scope 2 market-based

Verification or assurance cycle in place
   Annual process

Status in the current reporting year
   Complete

Type of verification or assurance
   Reasonable assurance

Attach the statement

[LSCo_FY2022_VerificationStatement_S1S2S3_V3-062723_s.pdf]

Page/ section reference
   1

Relevant standard
   ISO14064-3

Proportion of reported emissions verified (%)
   100
C10.1c

(C10.1c) Provide further details of the verification/assurance undertaken for your Scope 3 emissions and attach the relevant statements.

<table>
<thead>
<tr>
<th>Scope 3 category</th>
<th>Scope 3: Fuel and energy-related activities (not included in Scopes 1 or 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verification or assurance cycle in place</td>
<td>Annual process</td>
</tr>
<tr>
<td>Status in the current reporting year</td>
<td>Complete</td>
</tr>
<tr>
<td>Type of verification or assurance</td>
<td>Reasonable assurance</td>
</tr>
<tr>
<td>Attach the statement</td>
<td>LSCo_FY2022_VerificationStatement_S1S2S3_V3-062723_s.pdf</td>
</tr>
<tr>
<td>Page/section reference</td>
<td>1</td>
</tr>
<tr>
<td>Relevant standard</td>
<td>ISO14064-3</td>
</tr>
<tr>
<td>Proportion of reported emissions verified (%)</td>
<td>100</td>
</tr>
</tbody>
</table>
C10.2

(C10.2) Do you verify any climate-related information reported in your CDP disclosure other than the emissions figures reported in C6.1, C6.3, and C6.5?

Yes

C10.2a

(C10.2a) Which data points within your CDP disclosure have been verified, and which verification standards were used?

<table>
<thead>
<tr>
<th>Disclosure module verification relates to</th>
<th>Data verified</th>
<th>Verification standard</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>C8. Energy</td>
<td>Energy consumption</td>
<td>ISO14064-3</td>
<td>Page 2 of LS&amp;Co.’s verification statement includes verification of the underlying energy by source and facility type in MWh.</td>
</tr>
</tbody>
</table>

Page 2 of LSCo_FY2022_VerificationStatement_S1S2S3_V3-062723_s.pdf

C11. Carbon pricing

C11.1

(C11.1) Are any of your operations or activities regulated by a carbon pricing system (i.e. ETS, Cap & Trade or Carbon Tax)?

Yes

C11.1a

(C11.1a) Select the carbon pricing regulation(s) which impacts your operations.

Poland carbon tax
(C11.1c) Complete the following table for each of the tax systems you are regulated by.

<table>
<thead>
<tr>
<th>Poland carbon tax</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Period start date</strong></td>
</tr>
<tr>
<td>January 1, 2021</td>
</tr>
<tr>
<td><strong>Period end date</strong></td>
</tr>
<tr>
<td>January 1, 2022</td>
</tr>
<tr>
<td><strong>% of total Scope 1 emissions covered by tax</strong></td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td><strong>Total cost of tax paid</strong></td>
</tr>
<tr>
<td>1,519</td>
</tr>
</tbody>
</table>

**Comment**
LS&Co.’s strategy for compliance across our global portfolio is to stay aware of current and emerging regulations and ensure we have systems and processes in place to comply with energy or emissions regulations. For our owned factory in Poland, we track and report emissions from stationary and mobile combustion annually, in order to comply with the Poland Carbon Tax.

(C11.1d) What is your strategy for complying with the systems you are regulated by or anticipate being regulated by?
LS&Co.’s strategy for compliance across our global portfolio is to stay aware of current and emerging regulations and ensure we have systems and processes in place to comply with energy or emissions regulations. For example, for our owned factory in Poland, we track and report emissions from stationary and mobile combustion annually, in order to comply with the Poland Carbon Tax.
We have applied this strategy by calculating emissions from our Poland factory to comply with the Poland Carbon Tax, as it is legal requirement. The factory has limits designated in a permit and these limits are met on an annual basis. While not all substances are listed in the permit (i.e., emissions
are not limited), there is still a fee associated with emissions from all sources. For example, carbon dioxide is not limited, but LS&Co. pays a fee for these emissions. Additionally, our owned-and-operated factory in Plock, Poland, is key to achieving our new, science-based GHG target. As a result, we upgraded 90% of our lighting to LED lights. We estimate energy savings to be 750 MWh/year for the full system, and, in 2018, the factory received an award from the Polish National Energy Conservation Agency for energy efficiency efforts.

LS&Co. believes government leadership is essential for widespread action to address climate change and create the enabling environment for companies like ours to invest in renewable energy and achieve the greatest savings from energy efficiency. We can do more, faster and cheaper with state and federal legislation that incentivizes us to capture efficiencies, invest in renewable energy, and reduce GHG emissions. The reduced business costs from these investments are savings we can reinvest in the company to grow our business and create jobs. Put simply, we can run our business better with the certainty of a price on carbon and government policies and incentives to help us to maximize energy efficiency and draw our energy from renewable sources.

To further explain the implementation and timing of our strategy, emerging regulations are included in our annual climate risk assessment because we have facilities in multiple jurisdictions that are subject to different climate-related regulations, and we closely monitor their relevance to our operations. For example, as a public company we will comply with disclosure of our climate-related risks and greenhouse gas emissions metrics under the EU’s CSRD and, if the SEC’s proposed climate disclosure rules are enacted, in our annual report on Form 10-K. Our business is not energy intensive and nearly all our facilities fall below threshold requirements for current regulations limiting emissions, cap and trade programs, and providing for mandatory reporting of greenhouse gas emissions. Our Policy and Advocacy team monitors current and emerging regulations that may impact business and operations. The expected magnitude of the risks driven by regulations are low to moderate and the likelihood is about as likely as not. We assess risks from emerging regulations as part of our regular sustainability-related materiality assessments.

**C11.2**

(C11.2) Has your organization canceled any project-based carbon credits within the reporting year?

No

**C11.3**

(C11.3) Does your organization use an internal price on carbon?

No, but we anticipate doing so in the next two years
C12. Engagement

C12.1

(C12.1) Do you engage with your value chain on climate-related issues?

- Yes, our suppliers
- Yes, our customers/clients
- Yes, other partners in the value chain

C12.1a

(C12.1a) Provide details of your climate-related supplier engagement strategy.

**Type of engagement**

- Engagement & incentivization (changing supplier behavior)

**Details of engagement**

- Directly work with suppliers on exploring corporate renewable energy sourcing mechanisms

**% of suppliers by number**

- 1

**% total procurement spend (direct and indirect)**

- 80

**% of supplier-related Scope 3 emissions as reported in C6.5**

- 0

**Rationale for the coverage of your engagement**
Beyond our ongoing engagement with suppliers in our PaCT assessment program, we have invested further attention specifically on renewable energy in our supply chain. In partnership with the International Finance Corporation (IFC), we are engaged with suppliers to assess renewable energy on-site opportunities based on their current GHG performance, building infrastructure, geography and investment interest.

As part of this renewable energy program, LS&CO and IFC hosted 3 webinars in which 45 suppliers across India, Bangladesh, Pakistan, Vietnam, and Cambodia engaged in knowledge sharing and capacity building.

Our rationale for the coverage of our engagement is to assess and engage suppliers that have feasible onsite renewable opportunities. Additionally, we have expanded our partnership with IFC to provide further financing support through the GTSF+ program to suppliers that have begun implementing low-carbon investment plans and have conducted PaCT cleaner production assessments. This includes offering them access to lower-cost financing to support their efforts, and together, deliver meaningful climate action. The GTSF+ program enables suppliers to access competitively priced financing based on criteria such as strong performance on our Supplier Code of Conduct. It provides access to capital for sustainability investments, which the supplier may otherwise not be able to finance.

Impact of engagement, including measures of success
The goal of the engagement with IFC is to forge continued partnerships and exploration with suppliers on renewable energy. Suppliers have been able to engage with market experts in terms of measuring their overall solar feasibility on-site or off-site through a CAPEX or OPEX model.

Our measure of success is the number of suppliers that have implemented renewable energy projects, and our goal is 100%.

22 factories (9 factories in Pakistan, 13 in Bangladesh) have participated in a Renewable Energy Aggregate project in partnership with IFC and Deloitte. In Pakistan, 70% of the engaged suppliers have implemented renewable energy projects and the remaining 30% have plans to implement.

The results of this engagement will have the following impacts: improved relationships with tier 1 and 2 suppliers, reduction in our scope 3 emissions, energy savings and efficiency improvements.

Success is measured by the number of suppliers participating in the program, project implementation and emissions reductions.

Comment
See sustainability report for more information

**Type of engagement**
Information collection (understanding supplier behavior)

**Details of engagement**
- Collect GHG emissions data at least annually from suppliers
- Collect targets information at least annually from suppliers

% of suppliers by number
1

% total procurement spend (direct and indirect)
80

% of supplier-related Scope 3 emissions as reported in C6.5
0

**Rationale for the coverage of your engagement**
We have developed a comprehensive Scope 3 greenhouse gas (GHG) inventory. Considering that 99% of our total GHG emissions come from Scope 3 categories, we are working closely with key suppliers to establish targets for emissions reductions and share best practices around energy efficiency and renewable energy procurement.

Aside from knowing that we must be responsible stewards of the resources we use, the business case for cultivating greater circularity in our value chain is clear: the raw materials used to produce LS&Co. products represent 80% of our carbon footprint (in 2020). Sourcing more sustainable materials and implementing a circular approach that keeps materials in use as long as possible reduces our footprint.

In addition to sourcing more sustainable materials, LS&Co. works with our regional sourcing leads to collect primary data on the composition of raw materials to be used in our GHG inventory instead of industry averages. In 2022, LS&Co, with the help of suppliers, analysed 750 fabric types and sundries to get primary data for the 2022 GHG inventory, enhancing our ability to calculate LS&Co-specific purchased goods &
services emissions. Future efforts to increase product circularity, recyclability, and recycled content will impact LS&Co.’s Scope 3, category 1 GHG emissions.

Lastly, a large portion of our footprint is due to the manufacturing of products attributed to suppliers. LS&Co. aims to increase our understanding of the waste generated in manufacturing and production because reductions in waste are linked to reductions in emissions. We are assessing how much waste is generated (to identify a baseline) and waste diversion/disposal activities with the goal to reduce waste (production through end-of-life). Our aim is to include in scope our Tier 1 and Tier 2 suppliers to understand waste generation and diversion activities at this stage of our supply chain, we are actively working on a methodology for to calculate this impact.

Impact of engagement, including measures of success

We request that our key suppliers (those that represent the vast majority of our unit production) report their energy usage and efficiency activities in the Sustainable Apparel Coalition’s (SAC’s) Higg Index. LS&Co. plans to use the primary data collected through the Higg Facility Environmental Module (FEM) to set targets that drive supplier energy efficiency and investments in renewable energy to reduce our Scope 3 GHG emissions. Higg data will also help LS&Co. improve the quality and accuracy of our Scope 3 GHG data so we can continue to identify hot spots and prioritize suppliers for future engagements. Measures of success include number of suppliers registered in the Higg Index and the number of suppliers reporting data in the Higg Index, with a threshold of 75% key supplier facilities. In 2021, 82% of our total key supplier facilities posted data to Higg, including 91% of our ‘key mills’, which are especially carbon-intensive facilities. 59% of the total key supplier facilities are in the Indian subcontinent: Pakistan, India, Bangladesh, and Sri Lanka.

Sourcing more sustainable materials and implementing a circular approach that keeps materials in use as long as possible reduces our footprint. Future efforts to increase product circularity, recyclability, and recycled content will impact LS&Co.’s Scope 3, category 1 GHG emissions because gains in supplier material and production efficiencies translate into reductions in GHGs.

We continue looking at ways to reduce waste associated with our products and operations.

The goal of the engagement is to establish a waste generation and disposal/diversion baseline, ensuring that the data being reported is as accurate as possible. The results will have the following impacts: improved data accuracy, increased understanding of data quality issues, and supplier training to continually improve the data and to reduce and/or divert waste in accordance with the waste hierarchy.

Success is measured by data quality: obtaining supplier data that is 95% accurate is our threshold (currently, a sampling of 20 suppliers is estimated to be 94% accurate.
Comment

We plan to continue to grow the breadth and depth of our engagement through the Higg Index platform to track progress toward our science-based target (reduce the equivalent of 40% of our Category 1 (purchased goods and services) Scope 3 emissions by 2025 from a 2016 baseline). In 2022, we leveraged Higg Index data to directly engage with suppliers on issuing their progress-to-date against their own supplier-specific 2025 GHG target.

C12.1b

(C12.1b) Give details of your climate-related engagement strategy with your customers.

Type of engagement & Details of engagement

Education/information sharing

Run an engagement campaign to educate customers about the climate change impacts of (using) your products, goods, and/or services

% of customers by number

100

% of customer - related Scope 3 emissions as reported in C6.5

100

Please explain the rationale for selecting this group of customers and scope of engagement

Life Cycle Assessment studies inform our strategy for prioritizing engagements and serve as a measurement for impact. LS&Co.’s rationale for prioritizing engagements with customers is based on our LCA studies. In 2007, we commissioned our first lifecycle assessment for two of our core products, a Levi’s® 501® Medium Stonewash jean and a Dockers® Original Khaki. We learned that the greatest impact on climate change resulted from consumer use (34%). Based on these results, we decided to target 100% of our customer base through our "Care Tag for Our Planet" program, changing the product care tags in our clothing to include instructions about ways consumers can reduce the environmental impact of their clothes after leaving the store. Additionally, in 2021, we launched the Buy Better, Wear Longer advertising campaign with the objective of engaging customers to create awareness about the impact of the waste generated from the apparel industry on the environment. We continued the Buy Better, Wear Longer campaign through 2022 as well.
Impact of engagement, including measures of success

The Buy Better, Wear Longer campaign, launched in 2021, aims to raise awareness about overproduction and overconsumption, and to deliver a call to action – for ourselves, our consumers and our industry – to be more intentional about how we design, make, sell and buy clothes. As a result of this campaign, consumers around the world can come together to rethink fashion production and consumption. Positive social sentiment for the Buy Better, Wear Longer campaign in 2021 was strong, up to 86% positive on any given day, signalling that our consumers are aligned with the message and interest in contributing. Measures of success include performance on the annual Global Brand Equities survey conducted by our internal Marketplace Insights team, which specifically measures consumers’ brand perception about whether the Levi’s brand in the US has a significant lead over all competitors on this question: “Makes jeans that responsibly protect Earth’s natural resources”. Our threshold for success is a 5% YOY increase in our score on this question. Our score in Q1 ’23 was 49%, which was slightly down from 51% in Q1 ’22.

C12.1d

(C12.1d) Give details of your climate-related engagement strategy with other partners in the value chain.

i) LS&Co. considers organizations that it collaborates with to develop products and solutions with reduced climate impacts as other partners in the value chain.

ii) As part of LS&Co.’s ongoing effort to reduce the impact of our source materials, we have long been investigating and innovating new fiber and fabric strategies that we believe can deliver more sustainable products. And the WellThread line has given us the opportunity to build a sustainable design practice through which we can substantiate these innovations, determining if they work and if they can scale. We’ve always followed a design methodology driven towards greater circularity and that led us to Re:NewCell. In 2018, we visited their facility in Sweden, and seeing their environmentally friendly pulping process solidified our commitment to working with them. When the partnership afforded us the opportunity to use some of their first commercially available fiber, our WellThread team mobilized to bring the product to market in 2020. In our ongoing research and development, we strive to improve our design practices and conserve environmental resources every way we can. In 2021, we launched a new WellThread collection featuring plant-based dyes and eliminating synthetic components like nylon zipper tapes, polyester labels, and leather patches. By incorporating sustainable innovation, we learn what’s possible and work towards solving some of our biggest challenges. These jeans are a realization of a vision and a more circular design practice that can keep materials in circulation longer, therefore reducing the impact of the garments we create, while still delivering the same style and longevity Levi’s are known for. By using high quality recycled denim, we save on the water, chemical and carbon dioxide footprint of our jeans. Each part of the jean – the trims, the thread, etc. – are carefully calibrated to ensure it meets recycling specifications, allowing it to have a second life when it’s worn out. We’ve worked with our innovation partner, Re:NewCell, to ensure the jeans can go
back into their system and be used to make new raw materials, demonstrating that this garment is fully recyclable and truly circular. In 2021, Fast Company selected the Levi’s WellThread x Re:NewCell collaboration as a winner in the consumer products category of its 2021 World Changing Ideas Awards demonstrating the impact of this initiative within the industry.

C12.2

(C12.2) Do your suppliers have to meet climate-related requirements as part of your organization’s purchasing process?

Yes, climate-related requirements are included in our supplier contracts

C12.2a

(C12.2a) Provide details of the climate-related requirements that suppliers have to meet as part of your organization’s purchasing process and the compliance mechanisms in place.

<table>
<thead>
<tr>
<th>Climate-related requirement</th>
<th>Description of this climate related requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate-related disclosure through a non-public platform</td>
<td>As of May 2022, all supplier contracts require all businesses we work with to attest that they will operate in accordance with our updated supplier code of conduct. LS&amp;Co.’s supplier code of conduct includes guidelines on environmental compliance, waste management, water use and wastewater management, and air and greenhouse gas management. By signing a contract with LS&amp;Co., suppliers agree to have energy management policies and programs in place to reduce energy intensity and emissions production. Suppliers also agree to measure, manage, and disclose greenhouse gas emissions and carbon footprint to LS&amp;Co. As we continue to collect climate-related data from suppliers, we will seek to work with suppliers whose carbon reduction emissions and environmental programs’ ambitions align with our own. Since we have rolled out our new supplier code of conduct, 7,000 of our 16,000 suppliers have signed their updated contracts. Our team is working on obtaining signatures from all 16,000 suppliers.</td>
</tr>
</tbody>
</table>

% suppliers by procurement spend that have to comply with this climate-related requirement
% suppliers by procurement spend in compliance with this climate-related requirement

99

Mechanisms for monitoring compliance with this climate-related requirement

- Off-site third-party verification
- On-site third-party verification
- Supplier scorecard or rating

Response to supplier non-compliance with this climate-related requirement

- Retain and engage

Climate-related requirement

Implementation of emissions reduction initiatives

Description of this climate related requirement

To make progress and achieve our goal of reducing supply chain emissions (Scope 3, Category 1) by 40% by 2025, we must collaborate with our suppliers. We are working with our key suppliers, those representing approximately 80% of final product units, to make sure their emission reduction targets are at least 40%. To date, key suppliers have agreed to targets between 40% and 60%. Achieving these goals will require not only facility changes to equipment, but also investment in renewable energy of multiple forms.

As we approach the target date of end of 2025, we will evaluate if the suppliers are in compliance and adjust targets and engagement strategy accordingly.

% suppliers by procurement spend that have to comply with this climate-related requirement

80

% suppliers by procurement spend in compliance with this climate-related requirement

0
Mechanisms for monitoring compliance with this climate-related requirement
- Off-site third-party verification
- Supplier scorecard or rating

Response to supplier non-compliance with this climate-related requirement
- Retain and engage

C12.3

(C12.3) Does your organization engage in activities that could either directly or indirectly influence policy, law, or regulation that may impact the climate?

Row 1

External engagement activities that could directly or indirectly influence policy, law, or regulation that may impact the climate
- Yes, we engage directly with policy makers
- Yes, our membership of/engagement with trade associations could influence policy, law, or regulation that may impact the climate

Does your organization have a public commitment or position statement to conduct your engagement activities in line with the goals of the Paris Agreement?
- Yes

Attach commitment or position statement(s)

LSCO_Climate_Action_Strategy_2025.pdf

Describe the process(es) your organization has in place to ensure that your external engagement activities are consistent with your climate commitments and/or climate transition plan

LS&Co.’s organizational structure requires close collaboration across key departments. Our Sustainability function works with business leaders from across the company (including Global Policy and Advocacy) to evaluate, reassess and build alignment on the Company’s Climate Action Strategy 2025, ensuring strong integration into the business. In order to ensure all of LS&Co.’s policy activities are aligned with business
strategies, including our climate and energy objectives, LS&Co. holds monthly cross-functional policy meetings, which include the Chief Executive Officer, Chief Financial Officer, Chief Legal Officer (in 2023 this role’s title changed to ‘General Counsel’), Chief Communications Officer, Head of Global Policy and Advocacy, and Chief Sustainability Officer, who oversees the sustainability function. This ensures that even in a dynamic policy environment, executives have an opportunity to confirm the Company’s policy activity supports all aspects of the company’s strategy, including climate.

Our Climate Action Strategy is a roadmap for what we plan to do and how we plan to do it – and we hope it will inspire others across our industry to join us. These ambitious targets are approved by the Science Based Targets Initiative and aligned with the goals of the Paris Agreement, which continues to have our unwavering support.

C12.3a

(C12.3a) On what policy, law, or regulation that may impact the climate has your organization been engaging directly with policy makers in the reporting year?

Specify the policy, law, or regulation on which your organization is engaging with policy makers

Inflation Reduction Act

Category of policy, law, or regulation that may impact the climate

Carbon pricing, taxes, and subsidies

Focus area of policy, law, or regulation that may impact the climate

Other, please specify

Clean energy generation, renewable energy generation

Policy, law, or regulation geographic coverage

National

Country/area/region the policy, law, or regulation applies to

United States of America
Your organization's position on the policy, law, or regulation

Support with no exceptions

Description of engagement with policy makers

In 2022, LS&Co. advocated for ambitious clean energy solutions and other climate-related provisions included in the Inflation Reduction Act. LS&Co. joined the Lawmaker Education and Advocacy Day (LEAD) on Climate, hosted by Ceres BICEP to engage lawmakers on the importance of investing in clean energy. In addition, working with other member companies in the BICEP coalition, we advocated for policies that advance development of clean energy generation and opposed policies that would create barriers for clean energy. For example, LS&Co. joined a business letter regarding federal clean energy investments in April 2022, LS&Co. CEO Chip Bergh signed a letter to Senate Majority Leader Chuck Schumer and Speaker of the House Nancy Pelosi to finalize and promptly pass a critical climate and clean energy package in July 2022. LS&Co. also signed a business statement of support for the Inflation Reduction Act in August 2022.

Proposed legislative solution:
LS&Co. believes government leadership is essential for widespread action to address climate change and create the enabling environment for companies like ours to invest in renewable energy and achieve the greatest savings from energy efficiency. We can do more, faster and cheaper with state and federal legislation that incentivizes us to capture efficiencies, invest in renewable energy, and reduce GHG emissions. The reduced business costs from these investments are savings we can reinvest in the company to grow our business and create jobs. Put simply, we can run our business better with the certainty of a price on carbon and government policies and incentives to help us to maximize energy efficiency and draw our energy from renewable sources.

Details of exceptions (if applicable) and your organization’s proposed alternative approach to the policy, law or regulation

Have you evaluated whether your organization’s engagement on this policy, law, or regulation is aligned with the goals of the Paris Agreement?
Yes, we have evaluated, and it is aligned

Specify the policy, law, or regulation on which your organization is engaging with policy makers
U.S. SEC Climate Change Disclosure rules
**Category of policy, law, or regulation that may impact the climate**  
Climate change mitigation

**Focus area of policy, law, or regulation that may impact the climate**  
Other, please specify  
Mandatory carbon pricing

**Policy, law, or regulation geographic coverage**  
National

**Country/area/region the policy, law, or regulation applies to**  
United States of America

**Your organization’s position on the policy, law, or regulation**  
Support with minor exceptions

**Description of engagement with policy makers**  
In 2022, LS&Co. supported the alignment and standardization of climate disclosures in response to the U.S. Securities and Exchange Commission’s request for public input on mandatory climate change disclosure through comment letters submitted by LS&Co. trade associations including AAFA, NRF and RILA. LS&Co. advocated for credible climate reporting to enable companies to better benchmark their climate performance, analysts to rate companies’ performance based on consistent criteria, and investors to make decisions based on consistent data.

LS&Co.’s CFO participated in two conversations with SEC Chairman Gensler hosted by Accounting for Sustainability and RILA. Our CFO was also a founding participant in the US chapter of A4S (Accounting for Sustainability).

**Proposed legislative solution:**  
LS&Co. believes government leadership is essential for widespread action to address climate change and create the enabling environment for companies like ours to invest in renewable energy and achieve the greatest savings from energy efficiency. We can do more, faster and cheaper with state and federal legislation that drives us to capture efficiencies, invest in renewable energy, and reduce GHG emissions. The reduced business costs from these investments are savings we can reinvest in the company to grow our business and create jobs. Put simply,
we can run our business better with the certainty of a price on carbon and government policies and incentives to help us to maximize energy efficiency and draw our energy from renewable sources.

**Details of exceptions (if applicable) and your organization’s proposed alternative approach to the policy, law or regulation**

As the SEC considers comments to update the proposed disclosure rules, we believe there is opportunity to improve consistency of the materiality qualifications and thresholds aligned to the Supreme Court definition. Secondly, scope 3 can be very difficult to accurately calculate with limited primary data. Inclusion of scope 3 and at a minimum attestation should be voluntary if brought into a reporting regime with significant liability under the federal securities law. Lastly the financial statement disclosure requirements proposed under Regulation S-X are not well suited to meeting investors’ need for accurate and reliable financial information. The SEC should consider elimination of the proposed financial statements disclosure requirements from its final rules. At a minimum, the proposed 1% threshold should be eliminated in favor of the SAB 99 standard and any additional rules related to financial statements disclosures should be developed by the SEC in conjunction with the Financial Accounting Standards Board (FASB).

**Have you evaluated whether your organization’s engagement on this policy, law, or regulation is aligned with the goals of the Paris Agreement?**

Yes, we have evaluated, and it is aligned

**C12.3b**

(C12.3b) Provide details of the trade associations your organization is a member of, or engages with, which are likely to take a position on any policy, law or regulation that may impact the climate.

**Trade association**

Other, please specify

Business for Innovative Climate and Energy Policy (BICEP)

**Is your organization’s position on climate change policy consistent with theirs?**

Consistent
Has your organization attempted to influence their position in the reporting year?
Yes, we publicly promoted their current position

Describe how your organization’s position is consistent with or differs from the trade association’s position, and any actions taken to influence their position
BICEP supports three principles: increased adoption of renewable energy and energy efficiency; increased investment in a clean energy economy; and increased support for climate change resilience.

LS&Co. is a founding member of BICEP and currently sits on the steering committee to help shape the strategic direction of the coalition.

Funding figure your organization provided to this trade association in the reporting year (currency as selected in C0.4)
13,500

Describe the aim of your organization’s funding
LS&Co. promotes BICEP’s three principles: increased adoption of renewable energy and energy efficiency; increased investment in a clean energy economy; and increased support for climate change resilience.

Have you evaluated whether your organization’s engagement with this trade association is aligned with the goals of the Paris Agreement?
Yes, we have evaluated, and it is aligned

Trade association
Other, please specify
Sustainable Apparel Coalition (SAC)

Is your organization’s position on climate change policy consistent with theirs?
Consistent

Has your organization attempted to influence their position in the reporting year?
Yes, we publicly promoted their current position
Describe how your organization's position is consistent with or differs from the trade association's position, and any actions taken to influence their position

The Sustainable Apparel Coalition is the apparel, footwear, and textile industry’s leading alliance for sustainable production. The Sustainable Apparel Coalition’s vision is of an apparel, footwear, and textiles industry that produces no unnecessary environmental harm and has a positive impact on the people and communities associated with its activities. One of the primary metrics that it scores companies on is climate change impacts.

LS&Co. has a representative on the Board of SAC and a representative on the Policy Hub. The Policy Hub is working to provide a menu of policy options to the European Parliament to support the transition to a more circular apparel economy.

Funding figure your organization provided to this trade association in the reporting year (currency as selected in C0.4)

54,000

Describe the aim of your organization’s funding

LS&Co. promotes SAC’s vision of an apparel, footwear, and textiles industry that produces no unnecessary environmental harm and has a positive impact on the people and communities associated with its activities. One of the primary metrics that it scores companies on is climate change impacts.

Have you evaluated whether your organization’s engagement with this trade association is aligned with the goals of the Paris Agreement?

Yes, we have evaluated, and it is aligned

Trade association

Business Roundtable

Is your organization’s position on climate change policy consistent with theirs?

Consistent

Has your organization attempted to influence their position in the reporting year?

Yes, we publicly promoted their current position
Describe how your organization's position is consistent with or differs from the trade association's position, and any actions taken to influence their position

Business Roundtable CEOs are calling for a well-designed market-based mechanism and other supporting policies to provide certainty and unleash innovation to lift America toward a cleaner, brighter future.

In 2021, Business Roundtable submitted supportive comments to the U.S. Securities and Exchange Commission’s request for comments on mandatory climate disclosure, echoing a consistent position to the input LS&Co. provided to the SEC.

**Funding figure your organization provided to this trade association in the reporting year (currency as selected in C0.4)**

150,000

**Describe the aim of your organization’s funding**

LS&Co. promotes BRT’s vision for a comprehensive, coordinated, and market-based approach to reducing the emissions from American corporations. BRT members work to protect the environment by embracing sustainable practices across the business.

**Have you evaluated whether your organization's engagement with this trade association is aligned with the goals of the Paris Agreement?**

Yes, we have evaluated, and it is aligned

**C12.4**

(C12.4) Have you published information about your organization’s response to climate change and GHG emissions performance for this reporting year in places other than in your CDP response? If so, please attach the publication(s).

**Publication**

In mainstream reports

**Status**

Complete
Attach the document


Page/Section reference
Strategy: page 10, 12
Risks & opportunities: pages 3, 17, 23, and 27
Emission targets: page 12

Content elements
Strategy
Risks & opportunities
Emission targets

Comment

Publication
In voluntary sustainability report

Status
Complete

Attach the document

LS&Co_2021 Sustainability Report pgs1-50.pdf

Page/Section reference
Strategy: page 4-11
Governance: page 19-22
Supplier engagement: page 39-42
Emission targets: page 43-50

**Content elements**
- Governance
- Strategy
- Emissions figures
- Emission targets

**Comment**

**Publication**
In voluntary communications

**Status**
Complete

**Attach the document**

LSCO_Climate_Action_Strategy_2025.pdf

**Page/Section reference**
pp 1-10

**Content elements**
- Strategy
- Risks & opportunities
Emissions figures
Emission targets

Comment

Publication
In voluntary communications

Status
Complete

Attach the document

Fashion Futures 2025.pdf

Page/Section reference
pp 1-11

Content elements
Strategy
Other, please specify
Product Sustainability

Comment
Executive Summary Fashion Future 2025
C12.5

(C12.5) Indicate the collaborative frameworks, initiatives and/or commitments related to environmental issues for which you are a signatory/member.

<table>
<thead>
<tr>
<th>Environmental collaborative framework, initiative and/or commitment</th>
<th>Describe your organization’s role within each framework, initiative and/or commitment</th>
</tr>
</thead>
</table>
| **Row 1**  
Fashion Charter for Climate Action  
Task Force on Climate-related Financial Disclosures (TCFD)  
We Are Still In | Fashion Charter for Climate Action:  
LS&Co. signed on to the Fashion Industry Charter for Climate Action in 2018 during the COP24 conference. We have been active participants in working groups to make this charter actionable and impactful.  
TCFD:  
Our climate-related disclosures in both CDP and our sustainability report are aligned with the recommendations from the Task Force on Climate-related Financial Disclosures (TCFD). Our 2021 TCFD Index can be found here: https://www.levistrauss.com/wp-content/uploads/2022/09/2021-tcfd-index.pdf  
We Are Still In:  
LS&Co. was among the first wave of companies to sign on to the We Are Still In coalition in 2017 after the Trump administration withdrew from the Paris Agreement. We reaffirmed that commitment in 2020 by signing on to the 'We Are All In statement' and pledged to partner with fellow coalition members and the Biden-Harris administration to tackle the climate crisis.  

C15. Biodiversity

C15.1

(C15.1) Is there board-level oversight and/or executive management-level responsibility for biodiversity-related issues within your organization?
<table>
<thead>
<tr>
<th>Board-level oversight and/or executive management-level responsibility for biodiversity-related issues</th>
<th>Description of oversight and objectives relating to biodiversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, executive management-level responsibility</td>
<td>Biodiversity target included in Sustainable Business Plan (SBP), which Chief Sustainability Officer (CSO) is responsible for delivering. “Goal: Continue to assess and identify material impacts and dependencies on nature across the value chain, in order to implement a comprehensive biodiversity action strategy by 2025 Target Year: 2025. To that end, in FY22 LS&amp;Co. worked to quantify biodiversity impacts/dependencies to be able to create a baseline for targets to be set in FY23.</td>
</tr>
</tbody>
</table>

**C15.2**

(C15.2) Has your organization made a public commitment and/or endorsed any initiatives related to biodiversity?

<table>
<thead>
<tr>
<th>Indicate whether your organization made a public commitment or endorsed any initiatives related to biodiversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
</tr>
</tbody>
</table>

**C15.3**

(C15.3) Does your organization assess the impacts and dependencies of its value chain on biodiversity?

**Impacts on biodiversity**

<table>
<thead>
<tr>
<th>Indicate whether your organization undertakes this type of assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

**Value chain stage(s) covered**

- Direct operations
- Upstream

**Tools and methods to assess impacts and/or dependencies on biodiversity**

- CISL Biodiversity Impact Metric
GBS – Global Biodiversity Score  
IBAT – Integrated Biodiversity Assessment Tool  
STAR – Species Threat Abatement and Restoration metric

Please explain how the tools and methods are implemented and provide an indication of the associated outcome(s)

The IBAT/STAR tools were used as part of an analysis on our terrestrial biodiversity impacts from raw material production. In particular, the STAR scores were used to evaluate the significance of biodiversity present in areas impacted under our land use footprint. CISL’s BIM were used to supplement land use coefficients when calculating a biodiversity loss coefficient. Furthermore, the GBS was used to provide a quantified comparison of non-land use pressures impacts for raw material production (Tier 4) and processing (Tier 3).

Dependencies on biodiversity

Indicate whether your organization undertakes this type of assessment

No, but we plan to within the next two years

C15.4

(C15.4) Does your organization have activities located in or near to biodiversity-sensitive areas in the reporting year?

Not assessed

C15.5

(C15.5) What actions has your organization taken in the reporting year to progress your biodiversity-related commitments?

<table>
<thead>
<tr>
<th>Have you taken any actions in the reporting period to progress your biodiversity-related commitments?</th>
<th>Type of action taken to progress biodiversity-related commitments</th>
</tr>
</thead>
</table>
| Yes, we are taking actions to progress our biodiversity-related commitments | Land/water protection  
Land/water management  
Species management  
Education & awareness |
C15.6

(C15.6) Does your organization use biodiversity indicators to monitor performance across its activities?

<table>
<thead>
<tr>
<th>Does your organization use indicators to monitor biodiversity performance?</th>
<th>Indicators used to monitor biodiversity performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1. No, we do not use indicators, but plan to within the next two years</td>
<td></td>
</tr>
</tbody>
</table>

C15.7

(C15.7) Have you published information about your organization’s response to biodiversity-related issues for this reporting year in places other than in your CDP response? If so, please attach the publication(s).

<table>
<thead>
<tr>
<th>Report type</th>
<th>Content elements</th>
<th>Attach the document and indicate where in the document the relevant biodiversity information is located</th>
</tr>
</thead>
</table>
| In voluntary sustainability report or other voluntary communications | Content of biodiversity-related policies or commitments  
Impacts on biodiversity  
LSCO_2021 Sustainability Reports pp82-85.pdf |

C16. Signoff

(C-FI) Use this field to provide any additional information or context that you feel is relevant to your organization's response. Please note that this field is optional and is not scored.

N/A
C16.1

(C16.1) Provide details for the person that has signed off (approved) your CDP climate change response.

<table>
<thead>
<tr>
<th></th>
<th>Job title</th>
<th>Corresponding job category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Chief Financial Officer</td>
<td>Chief Financial Officer (CFO)</td>
</tr>
</tbody>
</table>

SC. Supply chain module

SC0.0

(SC0.0) If you would like to do so, please provide a separate introduction to this module.

N/A

SC0.1

(SC0.1) What is your company’s annual revenue for the stated reporting period?

<table>
<thead>
<tr>
<th></th>
<th>Annual Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>6,169,000,000</td>
</tr>
</tbody>
</table>

SC1.1

(SC1.1) Allocate your emissions to your customers listed below according to the goods or services you have sold them in this reporting period.

Requesting member
Wal Mart de Mexico
Scope of emissions

Scope 2 accounting method

Scope 3 category(ies)

Allocation level

Allocation level detail

Emissions in metric tonnes of CO2e

Uncertainty (±%)

Major sources of emissions

Verified

Allocation method

Market value or quantity of goods/services supplied to the requesting member
Unit for market value or quantity of goods/services supplied

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We are not currently able to allocate our Scope 1, 2, and 3 emissions because we have both retail and wholesale components to our business. In the future, we will work to develop an allocation methodology for our Scope 1, 2, and 3 emissions. Guidance from NGOs would help us overcome these challenges.

SC1.2

(SC1.2) Where published information has been used in completing SC1.1, please provide a reference(s).

SC1.3

(SC1.3) What are the challenges in allocating emissions to different customers, and what would help you to overcome these challenges?

<table>
<thead>
<tr>
<th>Allocation challenges</th>
<th>Please explain what would help you overcome these challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer base is too large and diverse to accurately track emissions to the customer level</td>
<td>We are not currently able to allocate our Scope 1, 2, and 3 emissions because we have both retail and wholesale components to our business. In the future, we will work to develop an allocation methodology for our Scope 1, 2, and 3 emissions. Guidance from NGOs would help us overcome these challenges.</td>
</tr>
<tr>
<td>Doing so would require we disclose business sensitive/proprietary information</td>
<td>In order to properly calculate Scope 3 emissions broken down by wholesale account, we would have to disclose production and sales data, which is sensitive and proprietary.</td>
</tr>
</tbody>
</table>

SC1.4

(SC1.4) Do you plan to develop your capabilities to allocate emissions to your customers in the future?
Yes
SC1.4a

(SC1.4a) Describe how you plan to develop your capabilities.

While we would likely be able to allocate our Scope 1 and 2 emissions associated with the office administration and distribution of products to our wholesale accounts, we consider these emissions to be immaterial compared to the estimated total emissions from the manufacturing of our products. Regarding our Scope 3 inventory, in future years we hope to develop an initial methodology for allocating these emissions based on customer account.

SC2.1

(SC2.1) Please propose any mutually beneficial climate-related projects you could collaborate on with specific CDP Supply Chain members.

<table>
<thead>
<tr>
<th>Requesting member</th>
<th>Wal Mart de Mexico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group type of project</td>
<td></td>
</tr>
<tr>
<td>Type of project</td>
<td></td>
</tr>
<tr>
<td>Emissions targeted</td>
<td></td>
</tr>
<tr>
<td>Estimated timeframe for carbon reductions to be realized</td>
<td></td>
</tr>
<tr>
<td>Estimated lifetime CO2e savings</td>
<td></td>
</tr>
</tbody>
</table>
Estimated payback

Details of proposal

We have no such projects to propose at this time.

SC2.2

(SC2.2) Have requests or initiatives by CDP Supply Chain members prompted your organization to take organizational-level emissions reduction initiatives?
   No

SC4.1

(SC4.1) Are you providing product level data for your organization’s goods or services?
   No, I am not providing data

Submit your response

In which language are you submitting your response?
   English

Please confirm how your response should be handled by CDP

<table>
<thead>
<tr>
<th>Please select your submission options</th>
<th>I understand that my response will be shared with all requesting stakeholders</th>
<th>Response permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public</td>
<td>Yes</td>
<td>Public</td>
</tr>
</tbody>
</table>
Please confirm below

I have read and accept the applicable Terms